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A B S T R A C T

The rise of single-cell sequencing technologies has enabled characterization of cellular
states at unprecedented scale and resolution. Despite the promise of single-cell profil-
ing, interpretation of the data is not straightforward due to substantial technical artifacts
from the sequencing process unrelated to any meaningful biological phenomena. For ex-
ample, single-cell RNA sequencing measurements may be confounded by transcriptional
noise, variable capture efficiency, and batch effects across experiments among other issues.
Towards obtaining robust biological insights from single-cell data, recent works have pro-
posed hierarchical Bayesian models that explicitly account for known technical source
of variation in the data generation process. By doing so, these models may disentangle
meaningful biological variations of interest from irrelevant nuisance factors.

Under this paradigm, the choice of how to represent “meaningful” variations largely
determines the efficacy of a given model. Yet, far from being static, this designation may
vary wildly between different analyses and is intimately linked with the specific analysis
being pursued. Thus, to draw meaningful insights from our data, we cannot simply reuse
models with relatively loose assumptions (e.g. data points being independently and iden-
tically distributed), but must instead carefully design our model’s structure in tandem
with a given line of inquiry. Concretely, the work presented in this thesis revolves around
the following claim:

No single model is suitable for all lines of inquiry. Distinct scientific questions require
distinct model structures to obtain meaningful insights from single-cell data.

To validate this claim, this thesis presents a suite of novel generative models tailored
for the investigation of specific classes of hypotheses in single-cell data science. Beyond
just single-cell analyses, we have found that the core ideas behind these models may be
of use in other machine learning domains more generally.

The remainder of this thesis is organized as follows: In Part I we provide an overview of
necessary biological and machine learning background and summarize the specific contri-
butions of this thesis. We proceed in Part II to describe our proposed models and present
accompanying experimental results demonstrating their efficacy. Part III concludes and
discusses potential directions for future work.
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Part I

P R E L I M I N A R I E S



1
T H E R I S E O F S I N G L E - C E L L G E N O M I C S

The cell represents the basic structural unit of all forms of life. While all cells share some
common features, distinct cell types have adapted over billions of years of evolution to
accomodate a wide variety of environments and take on a multitude of functional roles.
For example, nerve cells possess thin meters-long extensions that enable these cells to
transmit signals across the body. On the other hand, muscle cells’ superior elasticity allows
them to change in length as muscles contract and relax.

Since the discovery of cells by Hooke with his compound microscope in the 17th century
(Figure 1.1), new fundamental biological insights have often been driven by new technolo-
gies for experimental observation. Indeed, with continuous technological advances over
the centuries since Hooke’s initial discovery, we now have the ability to observe and
perturb biological systems at unprecedented scale. While initial observational techniques
were of low-enough resolution and throughput to permit manual analyses, the volume
of data generated by current high-throughput technologies is too vast for any indivdual
scientist to comprehend.

As such, in recent years molecular biology has become an increasingly computational
science, with advances in machine learning enabling breakthroughs on what were previ-
ously thought to be intractable problems (e.g. protein structure prediction via AlphaFold
[77]). Beyond innovations in experimental techniques for collecting new forms of data,
new biological discoveries are thus likely to become more and more dependent on corre-
sponding innovations in computational modeling.

In this thesis we consider the specific subfield of molecular biology known as genomics,
i.e., the study of the structure and function of the genome (an organism’s complete set of
DNA). Since the discovery of DNA as the molecular basis of inheritance and the deter-
mination of its structure in the 1950s, a long line of work has sought to understand how
the genetic information encoded in DNA determines the specific characteristics of corre-
sponding organisms. While some high-level phenomena were ascertained in short order,
such as Crick’s “central dogma of molecular biology”,1 obtaining a deeper understanding
of the genome would require more detailed molecular measurements not possible at the
time.

Fortunately, the development of molecular cloning and DNA sequencing in the 1960s
and 70s added significant momentum towards the goal of understanding the genome.
This wave of technological development reached an initial crescendo with the establish-

1 In brief, the central dogma posits that genetic information flows in a single direction from nucleic acid →
protein.

2



the rise of single-cell genomics 3

Figure 1.1: Initial glimpses of the cell. Hooke’s compound microscope (left), used to observe cells
for the first time in a thin slice of cork (right).

ment of the Human Genome Project (HGP) in 1990, with the goal of sequencing and
mapping the complete set of human genes. The formation of the HGP catalyzed further
innovations in high-throughput DNA sequencing, resulting in a draft sequence of the eu-
chromatic portion of the genome in 2001 [32] and the completion of the project in 2004

[33]. This wealth of data has since enabled large-scale studies of human genetic variations
and the cataloguing of regulatory and non-regulatory elements of the genome.

The success of the HGP inspired subsequent efforts to go beyond just identifying the
base pairs making up the contents of the human genome, but also to identify functional
elements (e.g. ENCODE [44]) and determine the expression of genes in different contexts
(e.g. GTEx [104]). Enabling these efforts was the development of further assays for measur-
ing the presence of pertinent molecular quantities, such as mRNA levels corresponding
to the expression of a given gene. In particular, the 1995 development of microarrays [143]
enabled for the first time the ability to quantify the activity of up to thousands of genes
in a biological system. Yet, the utility of microarrays was hampered by their requirement
to specify a specific set of gene targets and corresponding probes a priori, preventing their
use for ‘unbiased’ investigations of underlying biological state.

Following work sought to remove these limitations, culminating in the development
of so-called next-generation sequencing (NGS) methods, including RNA-seq [121]. Initial
RNA-seq protocols are designed to capture any polyadenylated (poly(A)-containing) mR-
NAs from the pooled contents of a collection of cells, removing the need to define a set
of target genes ahead of time. Because these first RNA-seq protocols aggregated together
the genomic contents from all cells in a given sample, they are often referred to as ‘bulk’
RNA-seq. While bulk RNA-seq alleviated the major pain point of previous microarray-
based approaches, its aggregation of measurements across all cells in a sample hindered
the investigation of differences in gene expression across distinct cell populations (e.g.
different cell types). While bulk RNA-seq could be combined with cell sorting protocols
(e.g. via flow cytometry), such approaches do not scale well and require substantial prior
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Figure 1.2: Schematic of 10x single-cell profiling. a, Gel beads are first pipetted into a microfluidic
chip. b, Gel beads are coated with oligonucleotide sequences containing a barcode that
marks each RNA molecule’s cell of origin, a unique molecular identifier (UMI) that
gives each transcript a unique fingerprint, a poly(dT) sequence for capturing mRNA,
and adapter sequences for downstream sequencing. c, in the chip beads are mixed with
cells and partitioning oil to form gel beads in emulsion (GEMs). d, Enzymes in the
mixture subsequently cause cells in GEMs to undergo lysis and gel beads to dissolve.
e, RNA molecules released from the cell bind to the poly-dT sequences coating the gel
bead, and primed RNA is reverse transcribed to form complementary DNA (cDNA). f,
GEMs are pooled in preparation for cDNA amplification and sequencing.

knowledge that may not be available in practice. To enable unbiased profiling of molec-
ular measurements in different cell populations, in their seminal work Tang et al. [152]
combined ideas from RNA-seq for sampling the full transcriptome with techniques for
isolating individual cells.

This development opened up the possibility of performing transcriptome-wide investi-
gations of individual cells’ gene expression profiles, and so began the era of single-cell ge-
nomics. Major advances in the ensuing years have since led to substantial increases in scale
for single-cell protocols, with commercially available platforms such as 10x Genomics (Fig-
ure 1.2) readily able to quantify mRNA contents of tens to hundreds of thousands of cells
in an individual single-cell RNA sequencing (scRNA-seq) experiment. In addition, beyond
just mRNA profiling, a rich line of work has developed single-cell protocols for measur-
ing further functional genomics quantities, such as cell surface protein levels via cellular
indexing of transcriptomes and epitopes (CITE-seq Stoeckius et al. [149]), chromatin acces-
sibility captured by single-cell Assay for Transposase-Accessible Chromatin (scATAC-seq,
Buenrostro et al. [23]) and DNA methylation as measured by single-cell bisulfite sequenc-
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ing (scBS-seq, Smallwood et al. [147]). The rise of single-cell assays has since enabled a
better understanding of a wide variety of biological phenomena, including Alzheimer’s
disease, immune responses to cancer, and embryogenesis [132, 151, 187].

Yet, despite the promise of single-cell profiling, the higher-resolution of single-cell as-
says has come at the cost of substantial technical artifacts from the sequencing process
compared to lower-resolution bulk sequencing protocols. For example, scRNA-seq mea-
surements are confounded by transcriptional noise, variable capture efficiency, and batch
effects between experiments among other issues [65, 83, 167]. Drawing robust conclusions
from single-cell assays thus necessitates handling the data with great care, and explicitly
accounting for distinct sources of variation in the data. That is, when assessing differences
between cell populations, we must ensure that we are operating on variations correspond-
ing to “meaningful” underlying cellular states rather than nuisance variations arising
from the sequencing process.

To address these challenges, a fruitful line of computational work has leveraged recent
innovations in generative modeling to recover representations of cells’ underlying states
by explicitly accounting for uninteresting technical sources of variation in the model’s
structure. In the next section, we proceed to provide the reader with a brief overview of
these techniques and requisite machine learning concepts in preparation for the remainder
of this thesis.



2
A P R I M E R O N G E N E R AT I V E M O D E L S

The machine learning techniques discussed in this report belong to a broader class of
methods known as generative models. In the generative modeling setting, we assume access
to a collection of data points {xi}

n
i=1 sampled from a distribution pdata. Our goal is then to

leverage the observed data to learn the parameters θ of another distribution pθ such that
pθ approximates the true distribution pdata. Once the parameters θ have been learned, we
can then generate new data points by sampling x ∼ pθ(x). In the case where our model is
implemented using neural networks, we may refer to the model as a deep generative model.

While in certain domains (e.g. computer vision) generating new samples may be a
worthy end goal in and of itself (e.g. generating novel images), here we seek to use our
models for biological discovery. To facilitate this process, we add an additional layer of
structure to our model. Rather than assuming that each data point is generated in a single
fell swoop, we assume first that a set of low-dimensional latent variables is drawn from
a prior distribution pθ(z), and subsequently the observed data is sampled from some
closed-form density pθ(x|z) with parameters determined by the latent variables. In the
context of single-cell data, we assume that z captures the underlying biological state of a
cell, while x corresponds to the full-dimensional observed data resulting from a single-cell
sequencing experiment.

By adding this additional structure, we open up avenues for answering a number of
questions that commonly arise in the analysis of single-cell data. For example, estimating
the posterior distribution pθ(z|x) allows for the clustering of cells into meaningful groups
based on their underlying state while controlling for noise. As another example, estimat-
ing pθ(x|z) enables the imputation of measurements that may be missing as a result of
technical factors, such as dropout effects in RNA-seq [83] or low genomic coverage in
BS-seq [111].

After specifying a model, we must then devise a procedure for inference, i.e., learning
the model parameters θ. In particular, we are concerned with the following two inference
tasks. First, we seek the parameters θ that maximize the evidence of the data, i.e.,

pθ(x) =

∫
pθ(x|z)pθ(z)dz. (1)

Computing this quantity exactly is possible for certain restricted classes of models
where the prior distribution is conjugate to the likelihood. However, exact inference is in-
tractable for most real-world distributions of interest, and naive approximations (e.g. via
Monte Carlo integration) may require exponential time to converge. Thus, as discussed in

6



2.1 variational inference 7

Figure 2.1: Graphical model depiction of a generic latent variable model. Here shaded nodes
represent observed random variables, while unshaded nodes represent hidden latent
variables.

more detail in Section 2.1, we must leverage more sophisticated approximation techniques
to accomplish this task.

Second, we seek to infer the posterior distribution pθ(z|x) that would allow us to recover
the latent values z for a given cell x. Using Bayes rule we can rewrite our posterior as

pθ(z|x) =
pθ(z)pθ(x|z)

pθ(x)
. (2)

While the numerator in this expression is typically straightforward to compute, as
we have pre-specified closed-form densities for pθ(z) and pθ(x|z), we again find the in-
tractable evidence term in our denominator. As a result, for both of our inference tasks we
must resort to approximations. Fortunately, the technique of variational inference [16], will
allow us to construct a tractable optimization problem that connects our two inference
tasks.

2.1 variational inference

Variational inference begins by considering the problem of approximating the true pos-
terior distribution pθ(z|x). In particular, we posit a set of candidate densities Q, where
each qϕ(z) ∈ Q represents a potential approximation of the true posterior distribution
pθ(z|x). Here Q is referred to as the variational family, and individual candidate distribu-
tions in Q are referred to as variational distributions. Our goal is then to find the candidate
variational distribution in Q that is most similar to the exact posterior, where here we
use the Kullback-Leibler (KL) divergence [93] to quantify the similarity between distri-
butions. As we shall soon see, finding the variational distribution that best matches the
posterior is intimately related to our other inference problem of maximizing the evidence
(Equation (1)).

Formally, we reformulate inference as solving the following optimization problem:

q∗
ϕ(z) = arg min

qϕ∈Q

DKL(qϕ(z) || pθ(z|x)), (3)
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where DKL denotes the KL divergence. Solving the problem in Equation (3) as written
remains intractable, as we may see by using the definition of the KL divergence to obtain

DKL(qϕ(z) || pθ(z|x)) = E[logqϕ(z)] − E[logpθ(z|x)], (4)

where all expectation are taken with respect to qϕ. Expanding further yields

DKL(qϕ(z) || pθ(z|x)) = E[logqϕ(z)] − E[logpθ(z, x)] + logpθ(x), (5)

which reveals that our objective remains dependent on the intractable evidence term.
Because we cannot minimize the KL directly, we thus instead choose to maximize the
following surrogate objective

ELBO(qϕ) = E[logpθ(z, x)] − E[logqϕ(z)]. (6)

Notably, the ELBO is equivalent to the (negative) KL divergence term from our original
optimization problem in Equation (3) plus logpθ(x), which is constant with respect to
qϕ(z). Thus, maximizing the ELBO is equivalent to minimizing the original KL divergence.
Moreover, combining terms from Equation (5) and Equation (6), we obtain the following
expression of the evidence

logpθ(x) = ELBO(qϕ(z)) +DKL(qϕ(z) || pθ(z | x)). (7)

As the KL divergence is always ⩾ 0, by maximizing the ELBO we implicitly optimize
a lower-bound on the evidence, hence leading to the name of our objective: the Evidence
Lower BOund (ELBO). In other words, by optimizing the ELBO we are able to accomplish
both of our original inference objectives: maximizing the evidence and recovering the
posterior distribution of latent variables.

Finally, we note that our expression in Equation (6) can be further decomposed as

ELBO(qϕ) = E[logpθ(z)] + E[logpθ(x | z)] − E[logqϕ(z)] (8)

= E[logpθ(x | z)] −DKL(qϕ(z) || pθ(z)), (9)

which may provide further insight into the behavior of the ELBO objective. In particular,
we see that the first term on the right-hand-side of Equation (9) will encourage qϕ(z) will
be encouraged to place higher mass on configurations of latent variables that explain the
data, while the second term encourages the variational density to be close to the prior
distribution pθ(z).

The problem of variational inference and maximizing the ELBO is well-studied, and
recent works have developed effective optimization procedures for this task based on
stochastic gradient ascent and neural network models. In particular, the celebrated frame-
work of variational autoencoders [87, 136] has been successfully applied in many domains,
including computer vision [161], natural language processing, [118], and bioinformatics
Lopez et al. [107] among others.



2.2 auto-encoding variational bayes 9

Figure 2.1: The variational autoencoder architecture. An encoder neural network transforms
maps an observed data points to the approximate posterior distribution of its latent
variables. Samples from the posterior are then transformed back to the parameters of
a likelihood function in the original data space via a corresponding decoder neural
network.

2.2 auto-encoding variational bayes

After formulating our optimization problem in Equation (9), we must now specify a spe-
cific algorithm to solve the problem. When considering potential algorithms for this task,
we have two major desiderata: first, we require a procedure that is flexible enough to cap-
ture the complex nonlinear variations present in biological data; second, our procedure
must readily scale to the size of single-cell datasets, which may consist of tens or hundreds
of thousands of samples. Fortunately, the variational autoencoder (VAE) framework satis-
fies both of these criteria.

The VAE model consists of two main components. First, an encoder neural network
maps an observed data point xi to the parameters of the variational posterior qϕ(zi)

for that data point using a function fϕ represented by the network. For computational
reasons, we typically let our variational family Q consist of the set of multivariate normal
distributions with a diagonal covariance structure. Under this regime, we have qϕ(zi) =

N(µi, diag(σi)), where µi and σi are obtained as the outputs of fϕ. As the parameters of
qϕ(zi) for a point xi are computed explicitly using xi as input, qϕ(zi) is often denoted
qϕ(zi | xi) in the VAE literature. The second component of the VAE model consists of a
corresponding decoder neural network fθ that maps a given point z in the latent space to
the parameters of the generative model pθ(xi | zi). We depict the full VAE architecture in
Figure 2.1.
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Because the the parameters of our variational approximations are obtained via the neu-
ral network model, they do not need to all be stored simultaneously in memory as in
classical variational inference. Moreover, we can leverage recent advances in stochastic
optimization techniques to optimize our neural networks using small minibatches of data
without needing to load an entire dataset into memory at once. As such, the VAE frame-
work readily scales to large datasets. Moreover, through the use of neural networks VAEs
can capture the complex nonlinear relationships found in real-world biological data, thus
satisfying both of our desiderata.

2.3 generative modeling of single-cell omics data

Equipped with our VAE inference procedure, we must now specify the full details of our
latent variable model. In particular, for a given latent representation z, we must choose a
family of densities pθ(x | z) that we assume generated the observed data.

In other machine learning contexts (e.g. computer vision), practitioners often make the
simplifying assumption that pθ(x | z) follows a Gaussian distribution with mean param-
eter determined by the decoder network and fixed unit variance. While computationally
convenient, such assumptions are not suitable for single-cell data. Indeed, due to the
discrete nature of single-cell count data and the many sources of technical noise that
arise during the sequencing process, we must be more thoughtful about our choice of
distribution when modeling single-cell omics. To illustrate the thought process behind
choosing an appropriate distribution for single-cell data, below we provide a summary
of single-cell variational inference (scVI), a seminal VAE-based model for transcriptomic
scRNA-seq measurements as a case study.

Fully understanding the details below is not critical to the remainder of the thesis, and
readers less familiar with scRNA-seq may wish to skip to the end of this section. Rather
than the specific technical details, the crucial takeaway here is that designing a model
to capture “meaningful” variations in single-cell data - as opposed to nuisance factors -
requires careful thought.

The output of an scRNA-seq experiment consists of a cell by gene count matrix, where
each row in the matrix xi ∈ RG consists of the observed RNA transcript counts from G

genes for cell i. While count data is often modeled by default using a Poisson distribution,
scRNA-seq is known to be overdispersed (i.e., the observed variance is greater than would
be expected under a Poisson model). As such, scRNA-seq is often instead modeled with
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Genes

Figure 2.1: Graphical model depiction of the single-cell variational inference (scVI) model of
Lopez et al. [107]. Shaded notes indicate observed variables, unshaded nodes indicate
hidden variables, and plates denote independent replication.

the more flexible negative binomial (NB) distribution. Thus, a first cut at a latent variable
model of scRNA-seq might look like

z ∼ N(0, I)

xg ∼ NegativeBinomial(f(z), θg)

where here we use the mean-disperion parameterization of the negative binomial distribu-
tion, f(·) is a neural network mapping cells’ latent representations to the mean parameter,
and θg is a gene-specific dispersion parameter.

We could, in theory, plug this model into the VAE framework. However, we would
quickly find that the dominant source of variation captured by our inferred z to explain
the observed data is not meaningful biological variation, but rather differences in scale
between measurements from different cells. Indeed, due to a technical factor in scRNA-
seq known as library size (i.e., the total number of measured transcripts for each cell),
count measurements from different cells vary widely and cannot be directly compared.
To avoid z capturing variations related to library size, rather than proceeding directly
to the negative binomial likelihood, we may instead exploit the Gamma-Poisson mixture
definition of the negative binomial using the following extended model

z ∼ N(0, I)

ρ = fw(z)

wg ∼ Gamma(ρg, θg)

xg ∼ Poisson(ℓ ·wg),
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Figure 2.2: A compressed representation of the scVI graphical model. Here the drawing of a
cell indicates that we have accounted for the sources of noise and intermediate latent
variables from the scVI model.

where fw is a neural network whose outputs are constrained to sum to one via application
of the softmax function. Here wg represents the underlying normalized expression of gene
g, with some inherent uncertainty captured by the Gamma distribution. These normalized
expression levels are then scaled to matched the observed data via multiplication by a
cell’s library size ℓ.

Beyond just library size differences, raw scRNA-seq count data are affected by two
other technical sources of variation that may confound our model. The first of these is
known as dropout, where a gene is erroneously read as never being expressed despite
being expressed in reality. To account for dropout, we may add an additional Bernoulli
variable that accounts for the possibility of gene counts being erroneously zeroed out. Sec-
ond, measurements across experiments are confounded by batch effects, i.e., systematic
variations between measurements due to differences in experimental setup rather than
underlying biology. To discourage batch effects from being captured in z, we add batch
labels s as an additional observed variable used to generate normalized expression levels.

This yields the final scVI model

z ∼ N(0, I)

ρ = fw(z, s)

wg ∼ Gamma(ρg, θg)

hg ∼ Bernoulli(fh(z, s))

yg ∼ Poisson(ℓ ·wg)

xg = hg · yg

which we depict graphically in Figure 2.1.

With major technical factors accounted for the scVI model is now equipped to capture
variations due to true underlying biology in its latent space, and since its initial devel-
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opment the model has seen widespread use in major single-cell analysis projeects. We
emphasize again though that full knowledge of the specific details of the generative pro-
cess presented above are not necessary to grasp the remainder of this thesis. Indeed, for
the remainder of this thesis we will choose to use a compressed representation of the scVI
model in Figure 2.2.

Rather, the reader need only take away the idea that how we define “meaningful” vari-
ations in single-cell data, and how we disentangle these from nuisance factors in practice,
may require careful thought. Crucially, the definition of “meaningful” is not static, and
will vary greatly depending on the specific assay or experimental design under considera-
tion. Thus, despite the success of models like scVI, no single model is sufficient to handle
all single-cell analysis tasks. Motivated by this idea, in Chapter 3 we introduce the main
contributions of this thesis, consisting of a suite of generative models designed to facilitate
specific lines of inquiry with single-cell data.



3
O U R C O N T R I B U T I O N S

In the previous chapter we illustrated how, through a carefully designed generative pro-
cess, we may disentangle meaningful underlying biological phenomena from technical
variations in single-cell data. To do so required positing a generative process (Figure 2.1)
that explicitly segmented distinct sources of variation. Crucially, underlying this process
was a specific set of assumptions as to what variations may be considered “meaningful”
in our analyses.

While these assumptions may be valid for generic scRNA-seq analyses, our definition
of “meaningful” variations may change depending on our specific experimental design.
For example, recent technological advances now enable us to intervene on individual cells
and change their properties via genetic or chemical perturbations (Figure 3.1), and then
subsequently profile their molecular state (e.g. via RNA-seq). In these settings our goal
is often to specifically understand the novel molecular phenomena induced by a cells’
perturbation which were not present in corresponding control cells.

In this setting, simply disentangling variations due to technical effects from those due to
underlying biology may no longer be sufficient. While certain factors of variation shared
between control and perturbed cells which do indeed correspond to underlying biological
phenomena may be meaningful in other contexts (e.g. cell cycle effects), here they may
play the role of nuisance factors that obscure more subtle perturbation-induced variations
of interest. Thus, models built on the assumption that all variations corresponding to
biological phenomena are “meaningful” may not be useful for such analyses, and new
tools are needed.

Moreover, advances in sequencing protocols now allow us to quantify a variety of
molecular phenomena at the single cell level beyond just mRNA expression (Figure 3.2).
For example, the single-cell assay for transposase accessible chromatin with sequenc-
ing (scATAC-seq) allows for genome-wide assessments of chromatin accessibility and
single-cell bisulfite sequencing (scBS-seq) enables the measurement of chromosomal DNA
methylation. Each of these assays relies on a distinct molecular mechanism, resulting in
corresponding distinct sets of technical variations. Thus, once again, our assumptions
around what variations are “meaningful” may change substantially across analyses, and
the development of new assays requires the development of new computational models
in tandem to obtain robust insights from these emerging data modalities.

With these ideas in mind, the remainder of this thesis presents a suite of generative
models tailored to specific lines of inquiry with single-cell data. The unifying theme be-
hind these works is that carefully designing our models’ structures to recover specific

14
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Figure 3.1: A single-cell perturbation experiment. a-b, Cells from a population are perturbed,
e.g. via small molecule exposure or CRISPR-Cas9 mediated genome editing (a), or
left undisturbed as control cells (b). c, Single-cell sequencing measurements are then
collected from both groups of cells, with the goal of analyzing the molecular changes
induced by a given perturbation.

phenomena of interest may enable insights that would otherwise be obscured by stan-
dard analysis tools.

This section provides a brief overview of the latent variable models developed as part
of this thesis.

contrastivevi (Chapter 4) is a model designed to analyze data from single-cell per-
turbation experiments based on the principle of contrastive analysis [189]. In short,
rather than assuming that a single set of latent variables to represent underlying
biology, our method instead infers two sets of latent variables: background variables
shared between control and perturbed cells and salient variables available only to the
perturbed cells. By doing so, meaningful perturbation-induced variations can be an-
alyzed without confounding from nuisance variations shared with control cells (e.g.
cell-cycle-related changes in gene expression). This work was published in Nature
Methods [174].

methylvi (Chapter 5) is a latent variable model of single-cell methylation data from
scBS-seq experiments. MethylVI attempts to disentangle variations corresponding to
a cell’s underlying epigenetic state from those related to technical effects unerelated
to underlying biologcy (e.g. varying coverage of cytosines). Our model captures
over-dispered BS-seq count data using the beta-binomial distribution, and is readily
applicable to a variety of BS-seq analysis tasks. An initial version of MethylVI was
published at the NeurIPS Workshop on Generative AI and Biology [172], with a full
paper currently under review.
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Figure 3.2: The many molecular facets of a cell. New technological developments have enabled
the profiling of a wide variety of molecular phenomena from single cells, including
RNA levels (via RNA-seq), chromatin accessibility (via ATAC-seq), and methylation
levels (via BS-seq) among others.

fa-sgpvae (Chapter 6) is a dependency-aware latent variable model that can accomo-
date known relationships between samples. For example, when modeling spatially
resolved omics measurements, we may seek to incorporate spatial information into
our model’s generative process. To incorporate any known dependencies into the
modeling process, the FA-SGPVAE employs a Gaussian process prior on its latent
variables.

beyond single cell analyses

Some of the ideas underlying the models described above are not solely applicable to
single-cell omics data, but rather are modality-agnostic and may be of interest to the
general machine learning community. Indeed, development of the models led to a set of
general machine learning advances described below.

• Contrastive latent variable modeling: ContrastiveVI relies on so-called contrastive
latent variable modeling (i.e., separating enriched variations of interest in a dataset
from uninteresting background variations). In our initial experiments on this front
we found that previous work in this area [2, 144] was prone to instability during
training, prompting us to develop a novel training procedure for such models [170].
In addition, leveraging advances in gradient-based optimization of discrete vari-
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ables, we adapted contrastive latent variable models to the problem of feature selec-
tion [171].

• Gaussian process prior latent variable models: FA-SGPVAE employs a Gaussian
process prior on the models’ latent variables. While the Gaussian process prior
can successfully incorporate auxiliary information into the modeling process and
has elegant mathematical properties, unfortunately this prior introduces substantial
computational difficulties. Specifically, this prior necessitates matrix inversion op-
erations that have O(n3) complexity, where n represents dataset size, making this
model infeasible on even moderately sized datasets. To improve the scalability of
such models, we developed a sparse Gaussian process prior approximation method
based on inducing points combined with amortized optimiation techniques.



Part II

O U R C O N T R I B U T I O N S



4
I S O L AT I N G S A L I E N T VA R I AT I O N S I N P E RT U R B AT I O N S C R E E N S

Previously, we illustrated how naive probabilistic latent variable models (Figure 2.1) could
be augmented (Figure 2.1) to account for technical sources of variation in scRNA-seq data.
By doing so, variations relating to cells’ underlying states z can be deconvolved from
nuisance technical sources of variation while accounting for uncertainty in measurements.
Yet, depending on the goals of a given analysis, simply segmenting technical vs biological
sources of variation may not be sufficient to draw meaningful insights. Indeed, while
certain factors of variation that correspond to true underlying biology (e.g. cell cycle
effects) may be meaningful in some contexts, in other scenarios these same patterns may
play the role of uninteresting noise that can obscure more subtle patterns of interest.

In this chapter we illustrate the above idea through the specific task of analyzing single-
cell perturbation screens. In such scenarios single-cell measurements are simultaneously
taken from cells after receiving some treatment and from corresponding control cells. For
example, recent studies have profiled cells from cancerous versus healthy tissue [186],
cells exposed to drug compounds versus placebos [115], and cells with CRISPR-induced
genomic perturbations versus cells with unaltered genomes [39, 127]. When collecting
such datasets, it is often of interest to explore novel variations enriched in data from
the target cells (i.e., cells in the treatment condition) and which are not present in the
corresponding background cells (i.e., cells in the control condition).

Despite successfully accounting for technical sources of variation, popular probabilistic
latent variable models designed for scRNA-seq data [107, 109, 137] are not suited for this
task. In particular, this deficiency chiefly stems from the fact that standard latent variable
models employ a single set of variables z to represent cellular state. Because the novel
variations specifically enriched in target cells are often subtle compared to the overall
variations in the data [130], such models are prone to entangling the enriched variations
of interest with irrelevant latent factors or may fail to capture the enriched variations
entirely.

Notably, the problem of isolating the variations enriched in a target dataset has been
studied in the machine learning literature under the name contrastive analysis (CA) [1, 2,
76, 96, 144, 189]. Yet, prior to this author’s work, few attempts had been made to adapt
these techniques for the analysis of single-cell data. To address this gap, we developed con-
trastive Variational Inference (contrastiveVI), a deep generative model that leverages ideas
from CA to facilitate the analysis of single-cell perturbation data (Figure 4.1). contrastiveVI
models the variations underlying scRNA-seq data using two sets of latent variables: the
first, called shared variables, capture variations common to background and target cells,
while the second, called salient variables, model variations exclusive to target data. Build-
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Figure 4.1: Overview of contrastiveVI. Given a reference background dataset and a target dataset
of interest, contrastiveVI separates the variations shared between the two datasets and
the variations enriched in the target dataset. a, Example background and target data
pairs. Samples from both conditions produce an RNA count matrix with each cell
labeled as background or target. b, Schematic of the contrastiveVI model. A shared
encoder network embeds a cell, whether target (red) or background (blue), into the
model’s shared latent space, which captures variations common to target and back-
ground cells. A second target-cell-specific encoder embeds target cells into the model’s
salient latent space, which captures variations enriched in the target data and not
present in the background. For background cells the values of the salient latent factors
are fixed to be a zero vector. Both target and background cells’ latent representations
are transformed back to the original gene expression space using a single shared de-
coder network.
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ing on previous work [107], our model’s generative process also accounts for the specific
technical biases and noise characteristics of scRNA-seq data.

The remainder of this chapter proceeds as follows. We begin by describing the con-
trastiveVI model in detail (Section 4.1), along with an extension (totalContrastiveVI) for
analyzing multi-modal CITE-seq datasets (Section 4.2). We then proceed to demonstrate
contrastiveVI’s utility on a collection of real-world scRNA-seq perturbation datasets (Sec-
tion 4.3). For each dataset we verified that contrastiveVI’s two latent spaces separated cells
recovered known shared and target-cell-specific biological phenomena; subsequently, we
proceeded to explore the additional patterns highlighted in the model’s salient latent
space, and we found that the model uncovered meaningful biological phenomena that
are more difficult to discern with standard scRNA-seq analysis workflows. We also apply
totalContrastiveVI to an ECCITE-seq perturbation screen and report similar findings. We
conclude with a discussion reflecting on these results and their implications for further
work (Section 4.4).

4.1 the contrastivevi model

Here, we present the contrastiveVI model in detail. We begin by describing the model’s
generative process and then the model’s inference procedure.

4.1.1 Generative process

For a target cell with RNA transcript counts xn ∈ NG, we assume that each expression
value xng for sample n and gene g is generated through the following process:

zn ∼ Normal(0, I)

tn ∼ Normal(0, I)

ℓn ∼ LogNormal(ℓTµsn, (ℓ2σ)
Tsn)

ρn = fw(zn, tn, sn)

wng ∼ Gamma(ρng, θg)

yng ∼ Poisson(ℓnwng)

hng ∼ Bernoulli
(
f
g
h(zn, tn, sn)

)
xng =

yng if hng = 0

0 otherwise

In this process, zn and tn refer to the two sets of latent variables underlying variations
in scRNA-seq expression data. Here, zn represents variables that are shared across back-
ground and target cells, while tn represents variations unique to target cells. We place a
standard multivariate Gaussian prior on both sets of latent factors, since this specification
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BackgroundTarget

Figure 4.1: The ContrastiveVI generative process. Target (i.e., perturbed) cells are assumed to be
generated from two sets of latent variables with distinct semantic meanings. Shared
variables z correspond to perturbation-agnostic variations shared with controls, while
salient variables t capture perturbation-induced effects. Background (i.e., control) cells
are assumed to be generated solely from z with the salient variables t fixed at a con-
stant.

is computationally convenient for inference in the VAE framework [87]. To encourage the
deconvolution of shared and target-specific latent factors, for background data points bn,
we follow the same generative process but assume that the salient latent factors tn are
drawn from a Dirac delta distribution fixed at zero to represent the absence of salient
variations. Categorical covariates, such as experimental batches, are represented by sn.

Here, ℓµ and ℓ2σ ∈ RB
+, where B denotes the cardinality of the categorical covariate,

parameterize the prior for latent RNA library size scaling factor on a log scale, and sn
is a B-dimensional one-hot vector encoding a categorical covariate index. For each cate-
gory (e.g., experimental batch), ℓµ and ℓ2σ are set to the empirical mean and variance of
the log library size, respectively. The gamma distribution is parameterized by the mean
ρng ∈ R+ and shape θg ∈ R+. Furthermore, following the generative process, θg is equiv-
alent to a gene-specific inverse dispersion parameter for a negative binomial distribution,
and θ ∈ RG

+ is estimated via variational Bayesian inference. fw and fg in the generative
process are neural networks that transform the latent space and batch annotations to the
original gene space, i.e.: Rd× {0, 1}B → RG, where d is the size of the concatenated salient
and shared latent spaces. The network fw is constrained during inference to encode the
mean proportion of transcripts expressed across all genes using a softmax activation func-
tion in the last layer. That is, letting f

g
w(zn, tn, sn) denote the entry in the output of fw

corresponding to gene g, we have
∑

g f
g
w(zn, tn, sn) = 1. The neural network fh encodes

whether a particular gene’s expression has dropped out in a cell due to technical factors.
Our generative process closely follows that of scVI [107], with the addition of the

salient latent factors tn. While scVI’s modeling approach has been shown to excel at
many scRNA-seq analysis tasks, our empirical results demonstrate that it is not suited
for contrastive analysis (CA). By dividing the RNA latent factors into shared factors zn
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and target-specific factors tn, contrastiveVI successfully isolates variations enriched in
target datasets that were missed by previous methods. We depict the full contrastiveVI
generative process using our simplified graphical model notation in Figure 4.1.

4.1.2 Inference

We cannot compute the contrastiveVI posterior distribution using Bayes’ rule because the
integrals required to compute the model evidence p(xn | sn) are analytically intractable.
As such, we instead approximate our posterior distribution using variational inference
[16]. For target data points, we approximate our posterior with a distribution factorized
as follows:

qϕx
(zn, tn, ℓn | xn, sn) = qϕz

(zn | xn, sn)qϕt
(tn | xn, sn)qϕℓ

(ℓn | xn, sn). (10)

Here, ϕx denotes a set of learned weights used to infer the parameters of our approxi-
mate posterior. Based on our factorization, we can divide ϕx into three disjoint sets ϕz, ϕt

and ϕℓ for inferring the parameters of the distributions of z, t and ℓ, respectively. Follow-
ing the VAE framework [87], we then approximate the posterior for each factor as a deep
neural network that takes as input expression levels and outputs the parameters of its cor-
responding approximate posterior distribution (e.g., mean and variance). Moreover, we
note that each factor in the posterior approximation shares the same family as its respec-
tive prior distribution (e.g., q(zn | xn, sn) follows a normal distribution). We can simplify
our likelihood by integrating out wng, hng, and yng, yielding pν(xng | zn, tn, sn, ℓn),
which follows a zero-inflated negative binomial (ZINB) distribution and where ν denotes
the parameters of our generative model. As with our approximate posteriors, we real-
ize our generative model with deep neural networks. For Equation (10) we can derive
(Section 4.A) a corresponding variational lower bound:

p(xn | sn) ⩾Eq(zn,tn,ℓn|xn,sn) logp(xn | zn, tn, ℓn, sn)

−DKL(q(zn | xn, sn) || p(zn))

−DKL(q(tn | xn, sn) || p(tn))

−DKL(q(ℓ | xn, sn) || p(ℓn | sn)).

(11)

Similarly, for background cell m we approximate the posterior using the factorization:

qϕb
(zm, tm, ℓm | bm, sm) = qϕz

(zm | bm, sm)qϕt
(tm | bm, sm)qϕℓ

(ℓm | bm, sm), (12)

where ϕb denotes a set of learned parameters used to infer the values of zm and ℓm for
background samples. Following our factorization, we divide ϕb into the disjoint sets ϕz,
ϕt, and ϕℓ. Once again, we can simplify our likelihood by integrating out wmg, hmg, and
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ymg to obtain pν(bmg | zm, 0, sm, ℓm), which follows a ZINB distribution. We then have
the following variational lower bound for our background data points:

p(bm | sm) ⩾Eq(zm,tm,ℓm|bm,sm) logp(bm | zm, 0, ℓm, sm)

−DKL(q(zm | bm, sm) || p(zm))

−DKL(q(tm | bm, sm) || p(tm))

−DKL(q(ℓm | bm, sm) || p(ℓm | sm)).

(13)

As specified in our generative model, the prior distribution p(t) for background points
is a Dirac delta centered at zero. This constraint enforces the idea that our salient latent
factors should capture target-cell-specific variations and be uninformative for background
cells. Yet, with this constraint the KL divergence term DKL(q(tm | bm, sm) || p(tm)) in
Equation (13) is not defined, as a Gaussian distribution does not admit a density with re-
spect to a counting measure. To obtain a tractable objective function, previously proposed
contrastive latent variable models[76, 144] have ignored this term during optimization.
However, not explicitly enforcing this constraint may result in tm undesirably capturing
variations shared with control cells. To work around this issue while still enforcing the
desired constraint, we replace our degenerate KL divergence term with a regularization
penalty based on the squared Wasserstein distance[164, 175]. The Wasserstein distance
between a Gaussian random variable and a Dirac distribution has a closed form solution

W2
2(q(tm | bm, sm), δ{tm = 0}) = ||µt(bm, sm)||2 + ||σt(bm, sm)||2, (14)

where µt(bm, sm) and σt(bm, sm) denote the mean and standard deviations of the ap-
proximate posterior q(tm | bm, sm). Substituting this expression for the degenerate KL
term in Equation (13) yields a new lower bound for background points

p(bm | sm) ⩾Eq(zm,tm,ℓm|bm,sm) logp(bm | zm, ℓ, sm)

−DKL(q(zm | bm, sm) || p(zm))

− ||µt(bm, sm)||2 − ||σt(bm, sm)||2

−DKL(q(ℓm | bm, sm) || p(ℓm | sm)).

(15)

We then jointly optimize the parameters of our generative model and inference net-
works using stochastic gradient descent to maximize the sum of our final bounds for
background and target data points. All neural networks used to implement the variational
and generative distributions were feedforward and used standard activation functions. We
used the same network architecture and hyperparameter values for all experiments, and
we refer the reader to (Section 4.B) for more details.
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4.2 the totalcontrastivevi model

The contrastiveVI model presented in the previous section is designed to handle the spe-
cific noise characteristics of scRNA-seq data. However, the general idea behind the model
(as captured in Figure 4.1) can easily be integrated with noise models for other single-cell
modalities. To demonstrate this idea, here we describe totalContrastiveVI, an extension of
the totalVI model of Gayoso et al. [54] designed for analyzing CITE-seq data.

4.2.1 Generative process

Formally, for a given cell n, we have gene expression values xng for each measured gene
g and protein expression values ynτ for each measured protein τ. For gene expression
values, we assume the generative process described previously for contrastiveVI.

To account for the technical biases of CITE-Seq-based platforms, totalContrastiveVI
models protein counts as a mixture of foreground and background components. For target
cells, the full generative process for protein measurements is as follows:

zn ∼ Normal(0, I)

tn ∼ Normal(0, I)

βnτ ∼ LogNormal(cTτsn, (d2
τ)

Tsn)

πn = hπ(zn, tn, sn)

αn = gα(zn, tn, sn)

vnτ | zn, sn ∼ Bernoulli(πnτ)

rnτ | vnτ,βnτ, zn, tn, sn ∼ Gamma(ϕτ, vnτβnτ + (1− vnτ)βnταnτ)

ynτ | rnτ ∼ Poisson(rnτ)

Here, βnτ is a protein-specific variable representing a protein-specific background in-
tensity. The parameters cτ ∈ RB and d2

τ ∈ RB
+ for the prior distribution of βnτ are

protein-specific and treated as model parameters to be learned during training. vnτ con-
trols whether a given protein’s counts are generated from the background or foreground
mixture component, with its parameter πnτ being the output of the neural network hπ

and representing the probability of the counts being generated due to background alone.
gα is constrained such that its output αnτ always exceeds 1. Thus, one of the mixture com-
ponents will always be larger than the other, enabling one to be interpreted as foreground
and the other as background. For a given mixture component, ynτ | zn, tn, sn,βnτ fol-
lows a negative binomial distribution, which can be shown by integrating out rnτ. More-
over, ynτ given zn, tn, and sn can be shown to follow a negative binomial distribution
by integrating out vnτ, with ϕτ acting as a protein-specific inverse dispersion parameter.
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For background data points, we assume the same generative process but set tn = 0 to
represent the absence of salient latent factors.

The generative process of totalContrastiveVI closely follows that of totalVI [54], but with
the addition of salient latent factors.

4.2.2 Inference

As with contrastiveVI, for totalContrastiveVI we approximate our posterior distribution
using variational inference. For target data points we use an approximate posterior factor-
ized as follows:

qϕtarget(zn, tn, ℓn,βn | xn,yn, sn) =
(
qϕβ

(βn, | yn, sn)qϕz
(zn | xn,yn, sn)

· qϕt
(tn | xn,yn, sn)qϕℓ

(ℓn | xn, sn)
)
,

(16)

where ϕtarget denotes a set of learned weights for our approximate posterior distri-
bution. We can simplify the gene and protein likelihood as described previously to ob-
tain pv(xng | zn, tn, ℓn, sn), which is a zero-inflated negative binomial distribution, and
pv(ynt | zn, tn,βn, sn), which is a mixture of negative binomials.

For background points we have the following approximate posterior distribution:

qϕbackground
(zn, tn, ℓn,βn | xn,yn, sn) =

(
qϕβ

(βn | yn, sn)qϕz
(zn | xn,yn, sn)

· qϕt
(tn | xn,yn, sn)qϕℓ

(ℓn | xn, sn)
)
.

(17)

We then jointly optimize the parameters of our generative model and inference networks
using stochastic gradient descent to maximize the sum of the ELBOs over our background
and target data points. We note that, similar to contrastiveVI, our prior distribution for
the salient latent factors t is an isotropic Gaussian for target points and a Dirac delta
centered at 0 for background points. Moreover, to encourage the variational posterior
for t for background points to be close to the Dirac delta prior, we use the Wasserstein
distance penalty defined in Equation (14) in place of the intractable KL divergence in the
ELBO as done for contrastiveVI. All neural networks used to implement the variational
and generative distributions were feedforward and used standard activation functions.
We used the same network architecture and hyperparameter values for all experiments,
and we refer the reader to Section 4.B for more details.

4.3 results

4.3.1 Analyzing cell line responses to a small-molecule therapy

We first applied contrastiveVI to analyze an scRNA-seq dataset collected using the re-
cently developed MIX-seq [115] platform. MIX-Seq measures the transcriptional responses
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Figure 4.1: Applying contrastiveVI to isolate idasanutlin-induced variations in cancer cell lines.
a-c, UMAP plots of contrastiveVI’s shared latent representations for idasanutlin-treated
and control cells from McFarland et al. [115] colored by cell line (a), TP53 mutation sta-
tus (b) and treatment (c). d-f, UMAP plots of contrastiveVI’s salient latent space colored
by cell line (d), TP53 mutation status (e) and expression levels of the top four genes re-
turned by Hotspot [38] (f). RNA expression values depicted in (f) were denoised using
contrastiveVI then log library size transformed (Section 4.B). g, Quantitative compari-
son of salient and shared representation quality for contrastiveVI and baseline methods.
(*) denotes non-contrastive baseline methods, for which metrics were computed on the
given method’s single latent space. Individual metrics were scaled to lie between 0 and
1, and overall scores were computed by averaging salient and shared representation
scores. Raw values for salient and shared space metrics are available in Table A.4.1 and
Table A.4.2, respectively. Higher values for all metrics indicate better performance (see
Section 4.B for further details).
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of up to hundreds of cancer cell lines in parallel after being treated with one or more
small molecule compounds. Here our target dataset contained measurements collected
by McFarland et al. [115] from 24 cell lines treated with idasanutlin. The small molecule
idasanutlin is an antagonist of MDM2, a negative regulator of the tumor suppresor pro-
tein p53, hence offering cancer therapeutic opportunities [163]. It is known [163] that
idasanutin induces activation of the p53 pathway in cell lines with wild type TP53 while
transcriptionally inactive mutant TP53 cell lines do not respond to the compound. For
the background dataset, we used measurements from the same cell lines treated with the
control compound dimethyl sulfoxide (DMSO).

We began our analysis of this dataset by confirming that contrastiveVI’s representa-
tions agreed with prior knowledge. As variations that distinguished cell lines were shared
across treatment and control cells, we would expect contrastiveVI’s shared latent space to
clearly separate cells by cell line. Moreover, we would expect increased mixing between
DMSO- and idasanutlin-treated cells compared to the original visualization workflow of
McFarland et al. [115] (Figure A.4.1), even for cell lines with a wild type TP53 gene. We
found that cells indeed clearly separated by cell line in contrastiveVI’s shared latent space
(Figure 4.1a). In addition, for TP53 wild type cell lines (Figure 4.1b) we observed stronger
mixing across treatments (Figure 4.1c) as desired.

We next turned our attention towards contrastiveVI’s salient representations of treat-
ment cells. Based on idasanutlin’s mechanism of action, we would expect separation be-
tween TP53 wild type and mutant cell lines. Moreover, because TP53 mutant cell lines
all exhibit the same (non-)response to the compound, we would expect strong mixing of
the TP53 mutant cell lines. Qualitatively, we indeed observed clear mixing of TP53 mu-
tant cell lines and a separation of cells by TP53 mutation status in contrastiveVI’s salient
latent space (Figure 4.1d-e). In our analysis of contrastiveVI’s salient latent space we also
observed separation between the individual idasanutlin-responding TP53 wild type cell
lines, potentially reflecting cell-line-specific responses to the compound. To better under-
stand which genes drove this separation, we used Hotspot [38], a tool for identifying
informative genes in a single-cell dataset by ranking genes in terms of spatial autocor-
relation with respect to a given metric of cell-cell similarity (e.g. the latent space of an
variational autoencoder). We found (Figure 4.1f) that the top genes returned by Hotspot
when applied to contrastiveVI’s salient latent space consisted of members of the p53 sig-
naling pathway, such as TP53I3 and CDKN1A, as well as well-known targets of p53, such
as SUGCT and FDXR. Moreover, we found qualitatively that idasanutlin-induced over-
expression of these genes appeared cell-line-specific with some genes, such as SUGCT,
only upregulated in a subset of TP53 wild type cell lines. We confirmed these findings
quantitatively by using contrastiveVI to impute denoised expression values and perform
a differential expression test similar to that of scVI (Section 4.A).

We compared contrastiveVI’s representations with those learned by previously pro-
posed linear contrastive models: the contrastive latent variable model (CLVM) of Severson,
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Ghosh, and Ng [144] as well the contrastive Poisson latent variable model (CPLVM) and
contrastive generalized latent variable model (CGLVM) proposed by Jones et al. [76] (Sec-
tion 4.B). Qualitatively we found that baseline contrastive models’ representations all dis-
agreed with prior knowledge. For example, cells exhibit substantially worse separation by
cell line in baseline contrastive models’ shared latent spaces compared to contrastiveVI’s
shared latent space (Figure A.4.2). Moreover, despite not responding to the treatment,
some TP53 mutant cell lines clearly separate in CLVM and CPVLM’s salient latent spaces,
which could result in misleading conclusions (Figure A.4.3).

We also compared contrastiveVI’s embeddings to those returned by non-contrastive
scRNA-seq analysis workflows. In particular, we applied principal component analysis
(PCA) as well as scVI [107] and DCA [45], two deep learning models for scRNA-seq data.
We found (Figure A.4.4) that these methods primarily separated cells by cell line with
additional visible shifts in TP53 wild type cell lines as a result of idasanutlin treatment.
However, because these methods do not explicitly deconvolve shared and perturbation-
specific variations, it is not clear whether the changes in expression driving these shifts
for TP53 wild type cell lines were shared across cell lines or if they were cell-line-specific.
On the other hand, contrastiveVI’s salient space immediately highlighted cell-line-specific
effects.

Finally, to systematically compare across methods, we computed a suite of metrics
quantifying the quality of baseline models’ salient and shared latent representations (Fig-
ure 4.1g). These metrics were chosen to capture how well each model’s representations
agreed with prior knowledge for this dataset: i.e., for contrastive models’ salient repre-
sentations we quantified the separation of TP53 mutant and wild type cells (TP53 ARI,
TP53 NMI, TP53 Silhouette) and mixing of the TP53 mutant cell lines (Entropy of Mu-
tant Cell Line Mixing, Mutant Cell Line Mixing Silhouette); for shared representations we
measured the separation of individual cell lines (Cell Line ARI, Cell Line NMI, Cell Line
Silhouette) and mixing across treatments (Entropy of Treatment Mixing, Treatment Mix-
ing Silhouette). As a further comparison, we also computed these same metrics for the
latent spaces returned by our non-contrastive baseline workflows. While baseline mod-
els all performed poorly on at least one metric, we found that contrastiveVI consistently
achieved strong performance across all metrics.

4.3.2 Uncovering cell-type-specific responses to pathogens

We next applied contrastiveVI to a more complex dataset with multiple perturbations
collected in Haber et al. [64]. This dataset consists of gene expression measurements of
intestinal epithelial cells from mice infected with either Salmonella enterica (Salmonella) or
Heligmosomoides polygyrus (H. poly). As a background for this dataset, we used measure-
ments collected from healthy control cells released by the same authors.
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Figure 4.2: Using contrastiveVI to uncover cell-type-specific responses to pathogen infections
in mice intestinal epithelial cells. a-b, UMAP plots of contrastiveVI’s shared latent
representations of treatment (i.e., H.poly- or Salmonella-infected) cells and control cells
colored by cell type (a) and infection type (b). c-d, UMAP plots of Salmonella- and
H. poly-infected epithelial cells, colored by cell type (c) and infection (d). e, Quanti-
tative evaluation of contrastiveVI and baseline models’ latent salient and shared rep-
resentations’ agreement with high-level prior knowledge. (*) denotes non-contrastive
baseline methods, for which metrics were computed on the given method’s single la-
tent space. Metrics were normalized as done in Figure 4.1. f-g, Further analysis of
contrastiveVI’s salient representations of H.poly-infected cells. RNA expression values
depicted in (f) and (g) were denoised using contrastiveVI then log library size trans-
formed (Section 4.B). Centers of box plots represent median expression values and
upper (lower) box bounds denote the third (first) quartile; upper (lower) whiskers rep-
resent third quartile + 1.5×inter-quartile range (first quartile - 1.5×inter-quartile range).
Minimum and maximum values denoted by ends of corresponding violin plots. Violin
plots depict expression values for non-tuft control cells (n = 3,180), control tuft cells
(n = 60), H.poly-infected non-tuft cells (n = 2,494), and H.poly-infected tuft cells (n =

217).
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We began our analysis by confirming that contrastiveVI’s salient and shared representa-
tions agreed with high-level prior findings from Haber et al. [64]. As variations that distin-
guished cell types were shared across treatment and control cells, we would expect cells
to separate primarily by cell type and mix across perturbations in the shared latent space.
Qualitatively, we found that cells indeed separated by cell type (Figure 4.2a) and gener-
ally mixed across treatments (Figure 4.2b) in contrastiveVI’s shared latent space. As noted
in Haber et al. [64], Salmonella and H. poly both induced substantial pathogen-specific
changes in gene expression. Moreover, while a small proportion of these changes were
noted to be cell-type-specific (e.g. enterocyte-specific Salmonella-induced gene expression
changes), most were shared across all cell types. We would thus expect cells to separate
primarily by pathogen in contrastiveVI’s salient space with increased mixing across cell
types. We found (Figure 4.2c-d) that cells indeed primarily separated by pathogen with
substantially increased mixing across cell types in contrastiveVI’s salient latent space. We
then qualitatively (Figure A.4.5 and Figure A.4.6) and quantitatively (Figure 4.2e) bench-
marked contrastiveVI’s embeddings against those of baseline models, and we found that
baselines’ representations frequently failed to recover prior knowledge.

We proceeded to further investigate the additional patterns revealed in contrastiveVI’s
salient latent space. In particular, we considered the notable separation of Salmonella-
infected enterocytes from the broader Salmonella cluster and H.poly-infected tuft cells from
the broader H.poly cluster. As enterocyte-specific Salmonella-induced gene expression pat-
terns were already analyzed by Haber et al. [64], we focused the remainder of our analysis
on the separation of H.poly-infected tuft cells from the broader cluster of H. poly cells. To
do so we used Hotspot [38] to uncover the most strongly spatially autocorrelated genes
for contrastiveVI’s salient representations of H. poly-infected cells. For this analysis we
excluded the known tuft marker genes provided by Haber et al. [64], which would exhibit
high autocorrelation due to the separation of tuft cells even without any infection-induced
changes.

We found that the top ten most spatially autocorrelated genes returned by Hotspot
included a number of genes, such as Reg3b, Cd74, and Gpx2, associated with the inflam-
matory response in the intestinal epithelium [47, 88, 105]. Upon further inspection, we
found that these genes exhibited substantially lower expression in the separated tuft cells
compared to H.poly-infected cells from other cell types (Figure 4.2f). Moreover, we found
that these genes were significantly upregulated in H.poly-infected non-tuft cells compared
to non-tuft controls, yet were not upregulated or upregulated to a much smaller degree in
H.poly-infected tuft cells compared to control tuft cells (Figure 4.2g). This muted upregula-
tion of inflammatory response genes in tuft cells may reflect their distinct role in the type
2 immune response [56]. We note that these tuft-cell-specific patterns in the expression
of inflammatory response genes were not discussed by Haber et al. [64] and could poten-
tially have been obscured by the standard analysis workflow employed in that work. For
example, Haber et al. [64] found that Reg3g was differentially expressed between H.poly-
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infected cells and controls for each individual cell type (FDR < 1× 10−13 for each cell
type). However, this result does not indicate whether the magnitudes of these differences
were cell-type-specific. On the other hand, our Hotspot analysis of contrastiveVI’s salient
latent space clearly highlighted the presence of cell-type-specific effects for Reg3g and
other inflammation response genes.

4.3.3 Exploring CRISPR-induced variations in a Perturb-seq screen

We next applied contrastiveVI to reanalyze a Perturb-seq dataset originally collected by
Norman et al. [127]. In that study the authors assessed the effects of 284 different CRISPR-
mediated perturbations on the growth of K562 cells, where each perturbation induced the
overexpression of a single gene or a pair of genes. Here, we focused on a subset of these
perturbations which the authors found grouped into stable clusters as determined by ap-
plying the HDBSCAN [27] algorithm to the mean expression profile of each perturbation.
After obtaining these clusters, Norman et al. [127] then labelled each cluster as expressing
a corresponding gene program. In our reanalysis of this dataset, we sought to understand
whether analyzing the data at the resolution of individual cells, as opposed to perturba-
tions’ mean expression profiles, could provide additional insights beyond those noted in
the original analysis of Norman et al. [127].

Based on the authors’ original findings, we would expect cells to separate based on
these gene program labels. However, when examining the perturbed cells using non-
contrastive analysis workflows, we found significant confounding due to cell cycle stage,
leading to poor separation of the labeled gene programs (Figure 4.3a; Figure A.4.7). Using
measurements from control cells infected with non-targeting guides as a background, we
next applied contrastiveVI and our baseline contrastive models to this dataset. We found
(Figure 4.3b) significantly increased mixing of cells across cycle phases and much stronger
separation by labeled gene programs in contrastiveVI’s salient latent space as desired. On
the other hand, we found that cells continued to mix across gene programs in CPLVM
and CGLVM’s salient latent space and G1 phase cells continued to clearly separate from
other cells in CLVM’s salient latent space (Figure A.4.8). We also quantified how well
each method separated cells by the gene program labels, and we found that contrastiveVI
achieved significantly better separation compared to baseline methods (Figure 4.3c). No-
tably, given the increased mixing of cells across cell cycle phases in contrastiveVI’s salient
latent space, the clear separation of cells with perturbations labeled as “G1 cell cycle ar-
rest” by Norman et al. [127] may at first appear counterintuitive. Upon further investiga-
tion (Section 4.C), we found that these cells exhibited an additional unique non-cell-cycle
related perturbation effect not discussed in Norman et al. [127] and thus indeed would be
expected to separate in contrastiveVI’s salient latent space.

During our analysis we also observed that the cells labeled as expressing an induced
granulocyte/apoptosis gene program grouped into multiple distinct subclusters in con-
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Figure 4.3: Isolating CRISPR-perturbation-induced variations in a large-scale Perturb-Seq ex-
periment with contrastiveVI. a-b, UMAP plots of a standard scRNA-seq analysis work-
flow consisting of normalization followed by PCA (a) and contrastiveVI’s salient latent
space (b) colored by cell cycle stage (top) and induced gene program identified by
Norman et al. [127] (bottom). c, Quantitative metrics capturing separation by gene
program label in contrastive models’ salient latent spaces and non-contrastive models
single latent spaces. (*) denotes non-contrastive baseline methods, for which metrics
were computed on the given method’s single latent space. Metrics were normalized as
done in Figure 4.1. d-f Exploration of the granulocyte/apoptosis subclusters revealed in
contrastiveVI’s salient latent space. RNA expression values depicted in (e) and (f) were
denoised using contrastiveVI then log library size transformed (Section 4.B). Centers
of box plots represent median expression values and upper (lower) box bounds denote
the third (first) quartile; upper (lower) whiskers represent third quartile + 1.5×inter-
quartile range (first quartile - 1.5×inter-quartile range). Minimum and maximum val-
ues denoted by ends of corresponding violin plots. Violin plots depict expression values
for CEBPB-perturbed cells (n = 311) that formed a separate cluster in the UMAP plot
in (d), a group of CEBPB-perturbed cells that mixed with the larger main cluster with
other perturbations (n = 52), and control cells (n = 7,275).
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trastiveVI’s salient latent space. Thus, to further demonstrate how contrastiveVI could
provide insights into this dataset not discussed in Norman et al. [127], we investigated
this separation in more detail. After rerunning UMAP solely on contrastiveVI’s salient
representations of granulocyte/apoptosis-labelled cells (Figure 4.3d), we observed two
clear groups of cells perturbed to overexpress CEBPB and SPI1, respectively, that sepa-
rated from a larger main cluster. We also noticed that, while most cells perturbed for
CEBPB could be found in the CEBPB-specific cluster, some were also mixed in with the
larger cluster. We then proceeded to explore the differences between these two groups
of CEBPB-perturbed cells. We found (Figure 4.3e-f) that some genes, such as the CEBPB
target PFN2 [43, 44, 139], were upregulated in both clusters compared to control cells,
indicating that the perturbation was successful for both groups. However, we also found
that granulocyte marker genes, such as LST1, CEBPE, and ITGAM were overexpressed in
the “mixed” CEBPB-perturbed cells compared both to control cells and CEPBP-perturbed
cells in the “separate” cluster. This phenomenon indicates a heterogenous response to the
perturbation that could potentially be missed by perturbation-level workflows similar to
that of Norman et al. [127].

4.3.4 Analyzing perturbation effects beyond RNA-seq

The results in presented in this chapter so far have focused exclusively on scRNA-seq per-
turbation screens. However, the effects of cellular perturbations extend beyond just mod-
ulating mRNA levels. As a result, additional sequencing protocols have been developed
that facilitate perturbations followed by readouts of other molecular quantities, including
chromatin state [140] cell surface proteins levels [50, 119] among other modalities. While
the contrastiveVI model used in our previous experiments is designed for the specific
noise characteristics of scRNA-seq, the high-level idea behind the model can be adapted
to analyze arbitrary single-cell modalities. To demonstrate this idea, we developed total-
ContrastiveVI (Section 4.2), which extends the CITE-seq totalVI model of Gayoso et al.
[54] to the perturbation screen setting.

To highlight totalContrastiveVI’s capabilities, we applied it to analyze an ECCITE-Seq
dataset from Papalexi et al. [130]. In that work, the authors sought to explore the reg-
ulatory networks underlying the expression of immune checkpoint molecules, such as
programmed death-ligand 1 (PD-L1), in THP-1 [29] cells. To do so, they measured cells’
transcriptomes alongside surface protein levels of the proteins PD-L1, PD-L2, CD86 and
CD366 for cells perturbed via one of 111 CRISPR guides as well as for a set of control cells
infected with non-targeting guide RNA (gRNA). As a baseline, we first applied totalVI
[54] to learn a lower-dimensional representation of the perturbed cells. Ideally the model
would capture perturbation-induced variations; however, we found instead totalVI’s latent
space was confounded by numerous alternative sources of variation, including tranduc-
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tion replicate identity, cell cycle stage, and activation of a gene program relating to cellular
stress response (Figure 4.4a, Figure A.4.9)x.

Using measurements from control cells infected with non-targeting guides as a back-
ground, we next applied totalContrastiveVI to this dataset. As expected, we found that
the totalContrastiveVI shared latent space was dominated by nuisance variations (Fig-
ure A.4.10). In contrast, the totalContrastiveVI salient latent space exhibited a clear clus-
tering structure invariant to replicate identity, cell cycle stage, and cellular stress response
(Figure 4.4b, Figure A.4.11). Of the three clusters revealed in totalContrastiveVI’s salient
latent space, we found that one consisted of cells perturbed for upstream components of
the IFN-γ pathway, one consisted solely of cells perturbed for IRF1, which encodes for an
IFN-γ mediator, and the remaining cluster consisted of cells from all perturbations (Fig-
ure 4.4c). We found that these clusters corresponded to distinct RNA expression patterns
of immune-response-related genes, with strong downregulation in cells perturbed for up-
stream components of the IFN-γ pathway and weaker but still notable downregulation in
cells perturbed for IRF1 (Figure A.4.12a). We also observed downregulation of the PD-L1

and PD-L2 proteins for cells perturbed for upstream components of the IFN-γ pathway
(Figure A.4.12b).

In their original analysis Papalexi et al. [130] found similar clusters of perturbed cells
using a nearest-neighbors based approach applied to transcriptomic measurements. Thus,
to further highlight the merits of our approach over previous workflows, we applied total-
ContrastiveVI’s downstream analysis tools inherited from totalVI to analyze the patterns
found in totalContrastiveVI’s salient latent space in greater depth and demonstrate how
these tools can lead to more robust conclusions compared to other analysis workflows. As
a case study, we focused on analyzing cells infected with IFNGR2-targeting gRNA. While
most of these cells clustered with cells perturbed for other members of the IFN-γ pathway
in totalContrastiveVI’s salient latent space, a substantial number belonged to the larger
mixed cluster containing cells infected with all gRNAs (Figure 4.4d). This heterogeneity
in response to IFNGR2 perturbation was also noted in Papalexi et al. [130], and to in-
vestigate it the authors of that study inspected IFNGR2 sequencing reads overlapping the
corresponding gRNA cut site from the two groups of cells infected with IFNGR2 gRNA. It
was found that cells infected by the IFNGR2 gRNA and which clustered with cells infected
by gRNAs targeting other members of the IFN-γ pathway exhibited frameshift INDEL
mutations at the gRNA cut site, indicating successful knockout (KO) of the IFNGR2 gene.
On the other hand, the other set of IFNGR2-gRNA-infected cells lacked these deleterious
mutations, indicating that the perturbation was not successful.

We then applied totalContrastiveVI’s downstream analysis workflows to further analyze
the two clusters of IFNGR2 gRNA cells and control cells. We began by considering the NP
IFNGR2 gRNA cells. As a first step in analyzing this cluster, we used totalContrastiveVI
to obtain denoised RNA expression values (Figure 4.4d) and protein counts (Figure 4.4e).
As expected, we found no notable differences in RNA and protein expression between
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Figure 4.4: Applying to totalContrastiveVI to isolate perturbation-induced variations in joint
RNA and protein measurements. a-b, UMAP visualizations of totalVI’s embeddings
(a) and totalContrastiveVI’s salient embeddings (b) colored by replicate number and
cell cycle stage. c, Visualization of the three clusters revealed in the totalContrastiveVI
salient latent space. d, Visualization of cells that expressed IFNGR2 gRNA in totalCon-
trastiveVI’s salient latent space. e, totalContrastiveVI denoised RNA expression levels
(log library size normalized; Section 4.B) of immune-related genes for control cells,
cells with knocked out (KO) IFNGR2 genes, as well as cells expressing IFNGR2 gRNA
but which were non-perturbed (NP). f, Distributions of log(totalContrastiveVI denoised
protein + 1) for control cells as well as the IFNGR2 KO and NP cells.
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control and NP cells. We verified this phenomenon using totalContrastiveVI’s RNA and
protein differential expression workflows, which correctly did not identify any differen-
tially expressed genes or proteins between the NP IFNGR2 gRNA cells and control cells.
We next considered the KO cells. Qualitatively, we observed substantial differences in to-
talContrastiveVI’s denoised RNA and protein expression levels for these cells compared
to controls. These results were confirmed using totalContrastiveVI’s DE workflow, which
identified twenty genes (Table A.4.3) and the PD-L1 and PD-L2 proteins (Table A.4.4) as
differentially expressed. This list of genes largely consisted of immune-response-related
genes, with strong enrichment for immune response pathways (Table A.4.5), such as the
IFN-γ signaling pathway (adjusted P value < 1× 10−9) and PD-1/PD-L1 signaling path-
way (adjusted P value < 1× 10−8). These results are expected, as IFNGR2 is a known
upstream component of the IFN-γ pathway [14] and IFN-γ has been found to have a
major effect on PD-1/PD-L1 expression in cancer cells [52].

We compared totalContrastiveVI’s results with a normalization and differential expres-
sion workflow similar to that of Papalexi et al. [130]. Qualitatively, as with totalCon-
trastiveVI, we did not observe substantial differences in normalized RNA (Figure A.4.13a)
or protein expression levels (Figure A.4.13b) between NP IFNGR2 cells and controls. How-
ever, using the DE workflow of Papalexi et al. [130] (i.e., a Wilcoxon rank-sum test), we
found that 23 genes (Table A.4.6) and the PD-L1 protein (Table A.4.7) were erroneously
identified as differentially expressed between NP cells and controls. Because these cells
were not successfully perturbed, any differences in RNA or protein abundance compared
to control cells likely stemmed from non-biologically-meaningful technical sources of vari-
ation, such as dropout effects or protein background from ambient or nonspecifically
bound antibodies. These results align with previous work [54, 107], which has found that
such technical sources of variation can confound standard DE analysis workflows with
false positive results.

We next used this workflow to analyze the IFNGR2 KO cells. We found substantial
qualitative differences in RNA and protein expression between KO cells and controls as
expected. When attempting to better understand these differences using the Wilcoxon
rank-sum DE workflow of Papalexi et al. [130], we found over 1,000 genes and all pro-
teins except PD-L2 were identified as differentially expressed. Moreover, of the ten most
enriched pathways based on genes returned by this DE workflow, we found that nine out
of ten of these pathways were related to the cell cycle (Table A.4.8). Given that Papalexi
et al. [130] found no statistically significant relationships between each perturbation and
the fraction of cells in each cell cycle state, this result suggests the presence of a significant
number of false positives that could potentially obscure the true effect of the perturbation.

Taken together, these results provide additional evidence for previous findings [54, 107]
that deep generative modeling techniques which explicitly model the technical biases and
noise characteristics of single-cell data can enable more robust downstream analyses of
the data compared to other workflows. In particular, these results illustrate that total-
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ContrastiveVI can potentially facilitate a better understanding of multimodal single-cell
perturbation screens by first deconvolving shared and perturbed-cell-specific variations
and subsequently leveraging the analysis capabilities of its base totalVI model.

4.4 discussion

This chapter considered the specific task of analyzing single-cell perturbation datasets.
In this context, the question of meaningful vs nuisance variations no longer simply cor-
responds to biologically related variations vs technical variations. Instead, here we are
primarily concerned with novel gene expression patterns induced in perturbed cells that
are not present in control cells, and variations shared between the two groups (even if
they correspond to biological phenomena) play the role of nuisance variations. Thus, pre-
viously proposed latent variable models described in Chapter 2 are not suited for this
setting, as these models only distinguish between biological and technical variations.

In response to this shortcoming, here we leveraged ideas from contrastive analysis to de-
velop a more structured latent variable model tailored to isolate meaningful perturbation-
induced variations in single-cell perturbation screens from unimportant variations shared
with controls. In a number of perturbation contexts (exposure to drug compounds, infec-
tion by different pathogens, and genomic perturbation via CRISPR), we demonstrate that
this additional structure may facilitate insights that are difficult or impossible to achieve
using less structured models. While this structure comes at the cost of flexibility - i.e.,
contrastiveVI is only applicable to perturbation screen analyses - our results demonstrate
that the utility resulting from imposing this structure is worth the price.

Indeed, even in the case of perturbation screen analyses, it can be beneficial to impose
yet additional structure to account for the idiosyncracies of different experiments. For
example, in subsequent work [169] focusing solely on CRISPR genomic perturbation data,
we further augmented contrastiveVI’s structure to account for variable CRISPR guide
RNA efficiency. By doing so, we found that our resulting model, dubbed contrastiveVI+,
could learn higher quality representations compared to the original contrastiveVI model.
We discuss this extended model in more detail along with other potential avenues for
future work in Chapter 7.

More broadly, the results presented here demonstrate how carefully tailoring model
structures to the particular questions of interest in a single-cell experiment can lead to
more fruitful analyses. In the next chapter we explore this idea through a different lens.
Namely, we consider the question of how to define “meaningful” cellular states in the
analysis of a relatively understudied single-cell modality: chromosomal DNA methylation
as measured via bisulfite sequencing.
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4.a supplementary methods details

Deriving contrastiveVI’s evidence lower bounds

Here, we derive the variational lower bounds for contrastiveVI presented in the main text.
For a given target cell x, the contrastiveVI generative model’s joint likelihood function
factorizes as

p(x, z, t, ℓ | s) = p(x | z, t, ℓ, s)p(ℓ | s)p(z)p(t).

Next, in order to perform variational inference we define the variational posterior as

q(z, t, ℓ | x, s) = q(z | x, s)q(t | x, s)q(ℓ | x, s).

Then we have

logp(x | s) = log
∫
p(x, z, t, ℓ | s)dzdtdℓ

= log
∫
p(x, z, t, ℓ | s)q(z, t, ℓ | x, s)

q(z, t, ℓ | x, s)
dzdtdℓ

⩾
∫
q(z, t, ℓ | x, s) log

p(x, z, t, ℓ | s)
q(z, t, ℓ | x, s)

dzdtdℓ

=

∫
q(z, t, ℓ | x, s) log

p(x | z, t, ℓ, s)p(z, t, ℓ | s)
q(z, t, ℓ | x, s)

dzdtdℓ

=

∫ (
q(z, t, ℓ | x, s) logp(x | z, t, ℓ, s) + q(z, t, ℓ | x, s) log

p(z, t, ℓ | s)
q(z, t, ℓ | x, s)

)
dzdtdℓ

= Eq(z,t,ℓ|x,s)[logp(x | z, t, ℓ, s)] −DKLq(z, t, ℓ | x, s)p(z, t, ℓ | s)

= Eq(z,t,ℓ|x,s)[logp(x | z, t, ℓ, s)] −DKLq(z | x, s)p(z)

−DKLq(t | x, s)p(t) −DKLq(ℓ | x, s)p(ℓ | s),

where we use Jensen’s inequality in the third step and the independence of z, t, and ℓ to
decompose the KL divergence term in the last step. Next, for a background point b, we
assume our generative process factorizes as

p(b, z, ℓ | s) = p(b | z, ℓ, s)p(ℓ | s)p(z),

with a corresponding variational posterior of

q(z, ℓ | b, s) = q(z | b, s)q(ℓ | b, s).
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We then have

logp(b | s) = log
∫
p(b, z, ℓ | s)dzdℓ

= log
∫
p(b, z, t, ℓ | s)q(z, ℓ | b, s)

q(z, ℓ | b, s)
dzdℓ

⩾
∫
q(z, ℓ | b, s) log

p(b, z, ℓ | s)
q(z, ℓ | b, s)

dzdℓ

=

∫
q(z, ℓ | b, s) log

p(b | z, ℓ, s)p(z, ℓ | s)
q(z, ℓ | b, s)

dzdℓ

=

∫ (
q(z, ℓ | b, s) logp(b | z, ℓ, s) + q(z, ℓ | b, s) log

p(z, ℓ | s)
q(z, ℓ | b, s)

)
dzdℓ

= Eq(z,ℓ|b,s)[logp(b | z, ℓ, s)] −DKLq(z, ℓ | b, s)p(z, ℓ | s)

= Eq(z,ℓ|b,s)[logp(b | z, ℓ, s)] −DKLq(z, | b, s)p(z) −DKLq(ℓ, | x, s)p(ℓ | s).

Denoising gene expression values with contrastiveVI

For a given target cell xn, contrastiveVI can be used to produce a denoised expression
profile x̃n by inferring xn’s salient and shared latent variables zn and tn and then decod-
ing this latent representation back to the full gene expression space. For background cells
the same procedure can be applied but with the salient variables tn fixed at 0. As done
in Gayoso et al. [54], when visualizing these denoised expression values we applied a log
library size transformation. That is, for a given denoised expression value x̃ng for a gene
g for cell n, we computed the value:

x̃ ′
ng = loge

(
L ·

xng∑
g xng

+ 1

)
,

where L is a scaling factor. For the results reported in this manuscript L was set to
the median of total RNA counts across cells (the default option in the scanpy [178]
normalize_total function).

Differential gene expression analysis with contrastiveVI

Similar to the procedure developed in Lopez et al. [107] for scVI, contrastiveVI’s prob-
abilitic respresentation of the data admits methods for differential expression testing be-
tween two sets of cells. Such tests can be constructed to detect the presence of a differential
expression effect without regards to effect size (referred to as the “vanilla” differential ex-
pression test in the scvi-tools [53] package) or to detect a differential expression effect
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greater than some pre-specified effect size δ (referred to as the “change” differential ex-
pression test in the scvi-tools [53] package). To remove the influence of the effect size
parameter δ on the results reported in this manuscript, we used the “vanilla” test in our
experiments. However, for completeness both tests have been implemented in our Python
package and we describe both tests below.

We begin by describing the “vanilla” test. For a given gene g and pair of target cells
(a,b) with shared latent representations (za, zb), salient latent representations (ta, tb),
observed gene expression (xa, xb), and batch IDs (sa, sb), we can formulate two mutually
exclusive hypotheses:

H
g
1 := Esf

g
w(za, ta, s) > Esf

g
w(zb, tb, s) vs H

g
2 := Esf

g
w(za, ta, s) ⩽ Esf

g
w(zb, tb, s),

where the expectation Es is assessed using the empirical frequencies. Evaluating which
of these two hypotheses is more likely is equivalent to computing a Bayes factor. The
sign of this factor indicates which hypothesis is more likely, and its magnitude indicates
a significance level. As done in [107], we consider a Bayes factor K to indicate a significant
result if |K| > 3, where K is defined as

K = loge

p(Hg
1 | xa, xb)

p(Hg
2 | xa, xb)

,

and the posterior of these models can be approximated by the variational distribution

p(Hg
1 |xa, xb) ≈∑

s

∫
za,ta,zb,tb

p(fgw(zb, tb, s) < fgw(za, ta, s))p(s)dq(za, ta | xa)dq(zb, tb | xb),

where p(s) denotes the relative abundance of cells in each batch s. Here all of our mea-
sures are low-dimensional, so the integrals can be computed with Monte-Carlo sampling.
All cells are assumed to be independent, so we can average the Bayes factors across a
large set of randomly sampled cell pairs, where one cell in a pair is from each population.
The average factor then describes whether cells from one population express g at a higher
level. This procedure, with a minor modification, can also be used to test for differentially
expressed genes with background cells. For these cells, the salient latent variable values
are fixed at 0; otherwise the test is conducted as described previously. For all results re-
ported in this manuscript, 10,000 cell pairs were sampled, 100 Monte Carlo samples were
obtained from the variational posteriors for each cell.

We now describe the effect-size-based test (i.e., the “change” test). For two cell groups
A = (a1,a2, ...,an) and B = (b1,b2, ...,bm) in the target dataset, the posterior probability
of gene g being differentially expressed in the two groups can be obtained as proposed
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by Boyeau et al. [19]. For any arbitrary cell pair ai,bj, we have two mutually exclusive
models:

M
g
1 : |rgai,bj

| > δ and M
g
0 : |rgai,bj

| ⩽ δ,

where r
g
ai,bj

:= log2(ρ
g
ai
) − log2(ρ

g
bj
) is the log fold change of the denoised, library-size-

normalized expression of gene g, and δ is a pre-defined threshold for log fold change
magnitude to be considered biologically meaningful. The posterior probability of differ-
ential expression is therefore expressed as p(Mg

1 | xai
, xbj

), which can be obtained via
marginalization of the latent variables and categorical covariates:

p(Mg
1 |xai

, xbj
) =∑

s

∫
zai

,tai ,zbj
,tbj

p(Mg
1 | zai

, tai
, zbj

, tbj
)p(s)dp(zai

, tai
| xai

, s)dp(zbj
, tbj

| xbj
, s),

where p(s) is the relative abundance of target cells in category s, and the integral can be
computed via Monte Carlo sampling using the variational posteriors qϕz

,qϕt
. Finally, the

group-level posterior probability of differential expression is∫
a,b

p(Mg
1 | xa, xb)dp(a)dp(b),

where we assume that the cells a and b are independently sampled a ∼ U(a1, ...,am) and
b ∼ U(b1, ...,bm), respectively. Computationally, this quantity can be estimated by a large
random sample of pairs from the cell group A and B.

This procedure, with a minor modification, can also be used to test for differentially
expressed genes between a group of target cells and a group of background cells. Without
loss of generality, let A denote a group of cells in the target dataset and B denote a group
of cells in the background dataset. When computing the integral in the expression for
p(Mg

1 | xai
, xbj

), the values of tbj
are fixed at 0 to represent their absence in the generative

process for background cells. The test then proceeds as previously described for the case
of two groups of target cells.

4.b supplementary experimental details

Pathway enrichment analysis

Pathway enrichment analysis refers to a computational procedure for assessing whether
a predefined set of genes (i.e., a gene pathway) has statistically significant differences in
expression between two biological states. Many tools exist for performing pathway enrich-
ment analysis (see Khatri, Sirota, and Butte [84] for a review). Our analyses used Enrichr
[30], a pathway analysis tool for non-ranked gene lists based on Fisher’s exact test, to find
enriched pathways from the Reactome 2016 pathway database [46]. Specifically, the En-
richr wrapper implemented in the open-source GSEAPy (https://gseapy.readthedocs.

https://gseapy.readthedocs.io/en/latest/
https://gseapy.readthedocs.io/en/latest/
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io/en/latest/) Python library was used for our analyses. Pathways enriched at false dis-
covery rate smaller than 0.05—adjusted by the Benjamini-Hochberg procedure [13]—are
reported in this study.

Further details on contrastiveVI network architecture

Three separate encoder neural networks were used to parameterize our approximate pos-
terior distributions for z, t, and ℓ. Each network had a single hidden layer consisting of
128 nodes. This was followed by a batch normalization layer [72], a rectified linear unit
(ReLU) activation function [124], and a dropout layer [148]. During training, the dropout
probability was set to 10%. The resulting 128 node values were then used as inputs for
two linear layers that parameterized the given factor (e.g., for the encoder corresponding
to q(z | x, s), the linear layers parameterized the mean and variance of z). For our main
results, we used 10-dimensional mean and variance parameters for z and t, and we used
a 1-d mean and shape parameter for ℓ.

Our decoder network began with a single hidden layer taking in values of our three
latent factors (i.e., z, t and ℓ) with an output dimension of 128. This was followed by batch
normalization, a ReLU activation function, and a dropout layer as described previously.
The output of this sequence was then fed to three separate decoder layers, one for each
of the three parameters of the ZINB distribution. To force the ZINB scale parameter to
lie between 0 and 1, we applied a softmax activation function to its corresponding de-
coder’s output. We note that similar decoding approaches have been successfully used by
previous unsupervised modeling approaches for scRNA-seq data [54, 107].

Further details on totalContrastiveVI network architecture

To parameterize z, t, and ℓ, encoder networks with the same architecture as those in con-
trastiveVI were used. To parameterize q(β | z, t, s), we used a neural network with one
hidden layer of 128 nodes that takes in as input (z, t, s) and outputs the parameters of
q(β | z, t, s). As in the other encoder networks, the hidden nodes were followed by a
batch normalization layer, a ReLU activation function, and a dropout layer with dropout
probability set to 10%.

The decoder consisted of three individual neural networks with one hidden layer of
128 nodes. Each network took as input our latent factors z and t as well as covariate
labels s. The first network mapped to the parameters of the mean of the RNA likelihood
ρn. The second network mapped to the foreground mean of the protein likelihood αn.
The third network mapped to the mixing parameter πn of the protein likelihood mixture.
All networks used batch normalization, a ReLU activation function in the hidden layer,
and a dropout layer as described previously. To force πn to lie between zero and one, an
additional sigmoid activation function was applied to the output of its network. We note

https://gseapy.readthedocs.io/en/latest/
https://gseapy.readthedocs.io/en/latest/
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that our architecture closely follows the default totalVI architecture as implemented in
scvi-tools with the addition of the salient variables t and corresponding encoder for t

as well as some minor differences in hyperparameter choices (e.g. 128 hidden nodes per
layer in our architecture as compared to 256 in totalVI).

Baseline models

To highlight the merits of contrastiveVI, we compared it to the previously proposed CA
methods CLVM, CPLVM and CGLVM. For all of these baseline methods, variations shared
between the background and target conditions are assumed to be captured by the shared
latent variable values {zbi }

n
i=1 and {ztj }

m
j=1, and target-condition-specific variations are cap-

tured by the salient latent variable values {tj}
m
j=1, where n,m are the number of back-

ground and target cells, respectively. The CLVM model is trained with a Gaussian like-
lihood function, and so we applied it to log library size normalized scRNA-seq data.
Specifically, each data point is assumed to follow a Gaussian distribution with unit vari-
ance and mean given by S⊤zbi + µb for a background cell and S⊤ztj +W⊤tj + µb for a
target cell, where S,W are model weights that linearly combine the latent variables, and
µb,µt ∈ RG are dataset-specific means with G denoting the number of genes. Posterior
distributions are fitted using variational inference with mean-field approximation and
log-normal variational distributions.

CPVLM and CGLVM instead operate on unnormalized count data. Library size differ-
ences between the target and background conditions are modeled by {αb

i }
n
i=1 and {αt

j }
m
j=1,

whereas gene-specific library sizes are parameterized by δ ∈ RG
+ , where G is the num-

ber of genes. Each data point is considered Poisson distributed, with the rate parameter
determined by αb

i δ ⊙ (S⊤zbi ) for a background cell i and by αt
jδ ⊙ (S⊤ztj +W⊤tj) for

a target cell j, where S,W are model weights that linearly combine the latent variables,
and ⊙ represents an element-wise product. The model weights and latent variables are
assumed to have Gamma priors, δ has a standard log-normal prior, and αb

i ,αt
j have log-

normal priors with parameters given by the empirical mean and variance of log total
counts in each dataset. The CA modeling approaches of CGLVM and CPLVM are simi-
lar. In CGLVM, however, the relationships of latent factors are considered additive and
relate to the Poisson rate parameter via an exponential link function (similar to a gener-
alized linear modeling scheme). All the priors and variational distributions are Gaussian
in CGLVM. As with CLVM, posterior distributions are fitted using variational inference
with mean-field approximation and log-normal variational distributions.

Beyond these CA method baselines, to illustrate the need for models specifically de-
signed for CA we also consider scVI, a deep generative model for scRNA-seq count data
that takes batch effect, technical dropout, and varying library size into modeling consider-
ation [107], as well as deep count autoencoder (DCA), an autoencoder neural network for
reducing noise in scRNA-seq count data due to technical dropout [45]. We also compare
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against a typical scRNA-seq analysis workflow in which PCA is applied to library-size-
normalized, log-transformed counts.

Model optimization details

For all datasets, contrastiveVI or totalContrastiveVI models were trained with 80% of the
background and target data; the remaining 20% was reserved as a validation set for early
stopping to determine the number of training epochs needed. Training was early stopped
when the validation variational lower bound showed no improvement for 45 epochs, typ-
ically resulting in 127 to 500 epochs of training. All contrastiveVI and totalContrastiveVI
models were trained with the Adam optimizer [86], with ε = 0.01, learning rate at 0.001,
and weight decay at 10−6. The same hyperparameters and training scheme were used
to optimize the scVI models using only target data, usually with 274 to 500 epochs of
training based on the early stopping criterion. As in the open-source implementation by
Eraslan et al., DCA models were trained for a maximum of 500 epochs using the RM-
Sprop optimizer with a learning rate at 0.001, with early stopping when the validation
loss showed no improvement for 15 epochs [45]. As in Jones et al., the CPLVMs were
trained via variational inference using all background and target data for 2,000 epochs
with the Adam optimizer with ε = 10−8 and a learning rate at 0.05, and the CGLVMs
were similarly trained for 1,000 epochs with a learning rate at 0.01 [76]. Finally, as in
[144], the CLVMs were trained for 10,000 epochs with the Adam optimizer with ε = 10−8

and a learning rate at 0.01. All models were trained with 10 salient and 10 shared latent
variables five times with different random weight initializations.

Datasets and preprocessing

We now briefly describe all datasets used in this work along with any corresponding
preprocessing steps. For our experiments datasets were chosen that not only had cells
in a target and corresponding background condition, but also which had ground truth
subclasses of target cells. Moreover, to avoid potential confounding effects, datasets col-
lected using a variety of single-cell platforms were used in our experiments. All pre-
processing steps were performed using the scanpy Python package [178]. For all exper-
iments we retained the top 2,000 most highly variable genes returned from the Scanpy
highly_variable_genes function, with the flavor parameter set to seurat_v3.

Kotliar et al., 2019

This dataset was generated using the simulation framework described in Kotliar et al. [90]
and implemented in the scsim (https://github.com/dylkot/scsim) Python package. 11

gene programs (10 identity programs P1, . . . ,P10 corresponding to simulated cell types

https://github.com/dylkot/scsim
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and one activity gene program Pa) were simulated as in Splatter [183]. Cells were then
randomly assigned to an identity program with an equal probability for each class. 35%
of cells from three cell types were randomly selected to express the activity program at a
usage level ϕi, uniformly distributed between 10% and 70%. Using Splatter’s notation, the
pre-trended mean gene-expression profile λ ′

i for each cell i = 1, . . . , 10, 000 was computed
as the weighted sum of the identity and the activity program:

λ ′
i = Li(ϕiPa + (1−ϕi)PI(i)),

where Li denotes the simulated library size for cell i, I(i) denotes the cell type identity
program for cell i, and ϕi = 0 for cells that do not express the activity program and
ϕi ∼ Uniform(0.1, 0.7) for those that do. For our experiments we simulated 10,000 genes,
400 of which were associated with the activity program. All additional hyperparameter
values for the simulation were set to those used in Kotliar et al. [90].

Cells were then divided into target and background datasets as follows. For cells types
that never expressed the activity program, cells were randomly assigned to the target or
background dataset. For cell types that did sometimes express the additional program,
cells were assigned to the target dataset if ϕi > 0 and the background dataset otherwise.

McFarland et al., 2020

This dataset measured cancer cell lines’ transcriptional responses after being treated with
various small-molecule therapies. For our target dataset, we used data from cells that were
exposed to idasanutlin, and for our background we used data from cells that were exposed
to a control solution of dimethyl sulfoxide (DMSO). TP53 mutation status was determined
using the DepMap [158] 19Q3 data release, available at https://depmap.org/. The count
data was downloaded from the authors’ Figshare repository at https://figshare.com/

articles/dataset/MIX-seq_data/10298696. For our analysis we excluded any cells that
were labeled as low-quality (i.e., a cell_quality metadata value not equal to normal) by
McFarland et al. [115].

Haber et al., 2017

This dataset (Gene Expression Omnibus accession number GSE92332) used scRNA-seq
measurements to investigate the responses of intestinal epithelial cells in mice to different
pathogens. Specifically, in this dataset, responses to the bacterium Salmonella and the par-
asite H. polygyrus were investigated. Our target dataset included measurements of cells
infected with Salmonella and from cells 10 days after being infected with H. polygyrus,
while our background consisted of measurements from healthy control cells released as
part of the same study.

https://depmap.org/
https://figshare.com/articles/dataset/MIX-seq_data/10298696
https://figshare.com/articles/dataset/MIX-seq_data/10298696
https://figshare.com/articles/dataset/MIX-seq_data/10298696
https://figshare.com/articles/dataset/MIX-seq_data/10298696
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92332
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Norman et al., 2019

This dataset (Gene Expression Omnibus accession number GSE133344) measured the ef-
fects of 284 different CRISPR-mediated perturbations on K562 cells, where each perturba-
tion induced the overexpression of a single gene or a pair of genes. Cells with the pertur-
bation label NegCtrl1_NegCtrl0__NegCtrl1_NegCtrl0 were excluded from our analysis as
done in the original analysis of Norman et al. [127]. We also excluded any cells from our
analysis that were marked as doublets by Norman et al. [127] (i.e., a number_of_cells

metadata value greater than 1.0). For our background dataset, we used all remaining un-
perturbed cells; for our target dataset, we used all perturbed cells that had a gene program
label provided by the authors.

Papalexi et al., 2021

This dataset (Gene Expression Omnibus accession number GSE153056) measured the ef-
fects of 111 different CRISPR knockout perturbations on THP-1 cells. The dataset contains
both transcriptomic measurements and measurements of surface protein levels for the
proteins CD86, PD-L1, PD-L2, and CD366. Our background dataset consists of measure-
ments from cells infected with non-targeting (NT) guide RNAs, while our target dataset
consists of measurements from the perturbed cells.

Evaluation Metrics

Here, we describe the quantitative metrics used in this study. All metrics were computed
using their corresponding implementations in the scikit-learn Python package [24]. To fa-
cilitate visual comparisons of performance of different models across multiple metrics, we
produced overview tables similar to those of Lotfollahi et al. [109] and Saelens et al. [141].
In these tables, individual scores are displayed as circles and aggregated scores as bars.
For each individual metric, we computed the mean value for each model trained five times
with different random weight initializations. These values were then minimum–maximum
scaled to facilitate comparisons between metrics, and these scaled scores were then aver-
aged into aggregated scores of salient or shared representation quality. A final overall
score was then produced by averaging the aggregate salient and shared representation
scores.

Average silhouette width

We calculate silhouette width using the latent representations returned by each method.
For a given sample i, the sillhouete width s(i) is defined as follows. Let a(i) be the average
distance between i and other samples with the same ground truth label, and let b(i) be

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133344
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153056
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the smallest average distance between i and all other samples with a different label. The
silhouette score s(i) is then

s(i) =
b(i) − a(i)

max
(
a(i),b(i)

) .

A silhouette width close to one indicates that i is tightly clustered with cells having the
same ground truth label, while a score close to -1 indicates that a cell has been grouped
with cells having a different label. In our results we report the average silhouette width
(ASW).

We also used the silhouette width to measure the mixing of groups of cells cells (e.g.
the Mutant Cell Line Mixing Silhouette and Treatment Mixing Silhouette metrics from our
analysis of the MIX-seq dataset from McFarland et al. [115]). To do so, we follow the
procedure described in Lotfollahi et al. [109], which consists of (i) computing the ASW
to measure the separation of different groups of cells and then (ii) inverting the ASW by
subtracting its absolute value from one. That is, we compute

ASWmixing = 1− |ASW|.

A higher ASWmixing score thus implies better mixing of the given groups of cells.

Entropy of Mixing

For c groups (e.g. cell types, different treatment conditions, etc.) the entropy of mixing
[107] [65] is defined as

c∑
i=1

pi logpi,

where pi denotes the proportion of cells from group i in a given region, such that∑c
i=1 pi = 1. Next, let U denote a uniform random variable over the population of cells.

Let BU then denote the empirical proportions of cells’ groups in the 50 nearest neighbors
of cell U. We report the entropy of this variables averaged over 100 random cells U. Higher
values of this metric indicate stronger mixing of the c groups.

Adjusted Rand index

The adjusted Rand index (ARI) measures agreement between reference clustering labels
and labels assigned by a clustering algorithm. Given a set of n samples and two sets
of clustering labels describing those cells, the overlap between clustering labels can be
described using a contingency table, where each entry indicates the number of cells in
common between the two sets of labels. Mathematically, the ARI is calculated as
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where nij is the number of cells assigned to cluster i based on the reference labels and
cluster j based on a clustering algorithm, ai is the number of cells assigned to cluster i

in the reference set, and bj is the number of cells assigned to cluster j by the clustering
algorithm. ARI values closer to 1 indicate stronger agreement between the reference labels
and labels assigned by a clustering algorithm. In our experiments we used the k means
clustering algorithm to assign cluster labels to cells. To reflect the fact that ground truth
labels are typically not known a priori, we ran k means and computed the ARI for k ∈
[max(1, true number of clusters − 3), true number of clusters + 3], and we reported the
maximum of these ARI scores.

Normalized mutual information

The normalized mutual information (NMI) measures the agreement between reference
clustering labels and labels assigned by a clustering algorithm. The NMI is calculated as

NMI =
I(P; T)√

H(P)H(T)
,

where P and T denote empirical distributions for the predicted and true clusterings, I
denotes mutual information, and H the Shannon entropy. To reflect the fact that ground
truth labels are typically not known a priori, we ran k means and computed the NMI for
k ∈ [max(1, true number of clusters − 3), true number of clusters + 3], and we reported
the maximum of these NMI scores.

4.c further analysis of “g1 cell cycle arrest” cells from Norman et al .
[127]

When inspecting contrastiveVI’s salient representations of perturbed cells from Norman
et al. [127], we found that a cluster of cells labeled “G1 cell cycle arrest” by Norman et
al. [127] clearly separated from other cells. As we found increased mixing of cells across
cell cycle phases in contrastiveVI’s salient latent space, the clear separation of cells with
perturbations labeled as “G1 cell cycle arrest” by Norman et al. [127] may at first appear
counterintuitive. We thus further inspected these cells to confirm that they expressed
additional non-cell-cycle-related variations not shared with control cells that would cause
them to separate in contrastiveVI’s salient latent space.

Using contrastiveVI’s differential expression test, we found that that these cells overex-
pressed multiple erythroid marker genes (HBZ, ALAS2, HBG2, and HBA2) relative to con-
trol cells. We also found that these cells overexpressed some non-erythroid-marker genes,
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such as the sodium-hydrogen antiporter 3 regulator SLC9A3R1, the polycomb group ring
finger PCGF5, and the insulin-like growth factor binding protein IGFBP4, that were not
also induced in cells in the “Erythroid” cluster identified in Norman et al. [127]. Moreover,
we found that these results held across all phases of the cell cycle (Figure A.4.14). These
results indicate that the cells originally labeled as “G1 cell cycle arrest” by Norman et al.
[127] indeed exhibited a unique set of perturbation-induced gene expression patterns be-
yond cell-cycle-related changes and thus would be expected to separate from other cells
in contrastiveVI’s salient latent space.
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4.d supplementary figures

Figure A.4.1: Visualization of MIX-seq dataset from McFarland et al. [115] using the visualiza-
tion workflow of McFarland et al. [115] MIX-seq dataset from McFarland et al. [115]
visualized using the original workflow of McFarland et al. [115] (i.e., applying UMAP
to normalized count data). Plots colored by cell line (left), TP53 mutation status (cen-
ter), and treatment (right).
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Figure A.4.2: Shared latent representations of baseline contrastive models for McFarland et al.
[115] a-c, UMAP plots of baseline contrastive models CLVM, CPLVM, and CGLVM’s
shared latent representations for McFarland et al. [115] colored by cell line (a), TP53
mutation status (b), and treatment (c).
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b

Figure A.4.3: Salient latent representations of baseline contrastive models for McFarland et al.
[115] a-c, UMAP plots of baseline contrastive models CLVM, CPLVM, and CGLVM’s
salient latent representations for McFarland et al. [115] colored by cell line (a) and
TP53 mutation status (b).
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Figure A.4.4: Latent representations of non-contrastive baseline models for McFarland et al.
[115] a-c, UMAP plots of noncontrastive baseline workflows. Here we depict the
results of a standard scRNA-seq analysis workflow (i.e., normalization followed
by principal component analysis and UMAP) as well as the latent representations
learned by DCA and scVI. Plots are colored by cell line (a), TP53 mutation status (b)
and treatment (c).
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Figure A.4.5: Baseline contrastive models’ shared latent representations of Haber et al. [64] a-b,
UMAP plots depicting baseline contrastive models’ shared latent representations of
all cells (i.e. treatment and control) from the mice intestinal epithelial cell infection
dataset from Haber et al. [64]. Cells colored by cell type (a) and infection (b).
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Figure A.4.6: Baseline contrastive models’ salient latent representations of Haber et al. [64] a-
b, UMAP plots depicting baseline contrastive models’ salient latent representations
of the treatment cells from the mice intestinal epithelial cell infection dataset from
Haber et al. [64]. Cells colored by cell type (a) and infection (b).
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Figure A.4.7: Latent representations of non-contrastive baseline models for Norman et al. [127].
a-b, UMAP plots of embeddings of the Norman et al. [127] Perturb-seq dataset from
the non-contrastive PCA, DCA, and scVI models. Plots colored by cell cycle phase
(a) and induced gene program labels provided by the authors (b).
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Figure A.4.8: Latent representations of contrastive baseline models’ salient representations for
Norman et al. [127]. a,b, UMAP plots of contrastive models’ salient embeddings of
the Norman et al. [127] Perturb-Seq dataset. Plots colored by cell cycle phase (a) and
induced gene program labels provided by the authors (b).
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Figure A.4.9: Expression of a cellular-stress related gene module confounds analysis of data
from Papalexi et al. [130] totalVI’s latent space colored by expression of a gene
module related to cellular stress shared with control cells.

Figure A.4.10: UMAP plots of the totalContrastiveVI shared latent space for Papalexi et al. [130].
a-c, UMAP visualization of the totalContrastiveVI shared latent space for Papalexi
et al. [130] colored by replicate number (a), cell cycle stage (b) and activation of a
cellular-stress gene module (c).
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Figure A.4.11: totalContrastiveVI’s salient latent colored by stress module expression. UMAP
visualization of totalContrastiveVI’s salient latent space colored by cellular stress
gene module expression.
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a b

Figure A.4.12: Visualizing the differences in expression patterns between the three clusters re-
vealed in totalContrastiveVI’s salient latent space. a, Distributions of denoised
RNA expression values (as computed by totalContrastiveVI) for immune-response-
related genes for control cells and the three clusters of perturbed cells revealed
in totalContrastiveVI’s salient latent space. Depicted values were log library size
transformed (Section 4.B) after denoising. b, Distributions of log(totalContrastiveVI
denoised protein + 1) for control cells (n = 2,386) and the the three clusters of cells
revealed in totalContrastiveVI’s salient latent space (n = 482 for IRF1 cells, n =

14,751 for “Mixed” cells, and n = 3,110 for “Upsteam of IFN-γ” cells). Centers of
box plots represent median expression values and upper (lower) box bounds denote
the third (first) quartile; upper (lower) whiskers represent third quartile + 1.5×inter-
quartile range (first quartile - 1.5×inter-quartile range). Minimum and maximum
values denoted by ends of corresponding violin plots.
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a b

Figure A.4.13: Visualizing of normalized RNA and protein expression levels obtained using the
workflow of Papalexi et al. [130] a Heatmap of normalized RNA expression levels
computed using the workflow of Papalexi et al. [130] for immune-related for control
cells, cells with knocked out (KO) IFNGR2 genes, as well as cells expression IFNGR2
gRNA but which were non-perturbed (NP). b, Violin plots of the distributions of
denoised protein expression levels computed using the CLR transformation used in
Papalexi et al. [130] for control cells (n = 2,386) as well as the IFNGR2 KO (n = 887)
and NP (n = 320) cells. Centers of box plots represent median expression values and
upper (lower) box bounds denote the third (first) quartile; upper (lower) whiskers
represent third quartile + 1.5×inter-quartile range (first quartile - 1.5×inter-quartile
range). Minimum and maximum values denoted by ends of corresponding violin
plots.
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a b c

Figure A.4.14: Distributions of genes mentioned in the main text found to be differentially
expressed between control cells and the cluster labelled “G1 cell cycle arrest” by
Norman et al. [127]. a-c, Distributions of expression values for genes mentioned in
the main text that were found to be upregulated in cells from the cells labelled as
“G1 cell cycle arrest” by Norman et al. [127] compared to controls. Distributions
shown for control cells (a; n = 924 G1 cells, n = 2,812 G2M cells, n = 3,539 S
cells), cells labelled “G1 cell cycle arrest” by Norman et al. [127] (b; n = 299 G1

cells, n = 136 G2M cells, n = 99 S cells), and cells labelled “Erythroid” by Norman
et al. [127] (c; n = 1,568 G1 cells, n = 1,529 G2M cells, n = 1,758 S cells). These
genes were found to be upregulated in “G1 cell cycle arrest” cells from all phases
of the cell cycle compared to controls. While some genes were also upregulated in
“Erythroid” cells, others were unique to “G1 cell cycle arrest” cells. Centers of box
plots represent median expression values and upper (lower) box bounds denote the
third (first) quartile; upper (lower) whiskers represent third quartile + 1.5×inter-
quartile range (first quartile - 1.5×inter-quartile range). Minimum and maximum
values denoted by ends of corresponding violin plots.
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4.e supplementary tables

Model TP53 TP53 TP53 Entropy of Mutant Mutant Cell Line

ARI NMI Silhouette Cell Line Mixing Silhouette

contrastiveVI 0.762± 0.023 0.621± 0.032 0.239± 0.008 2.107± 0.035 0.966± 0.001

CLVM 0.205± 0.067 0.316± 0.063 0.121± 0.002 0.805± 0.014 0.825± 0.001

CPLVM 0.231± 0.068 0.300± 0.063 0.182± 0.008 1.294± 0.067 0.935± 0.011

CGLVM 0.139± 0.049 0.159± 0.023 0.104± 0.007 1.323± 0.038 0.980± 0.007

PCA* 0.398± 0.014 0.459± 0.000 0.219± 0.000 0.090± 0.001 0.541± 0.000

DCA* 0.254± 0.067 0.361± 0.056 0.229± 0.054 0.026± 0.006 0.498± 0.012

scVI* 0.276± 0.052 0.373± 0.038 0.145± 0.003 0.013± 0.001 0.539± 0.004

Table A.4.1: Quantitative evaluation of salient representation quality for contrastiveVI and base-
line models on the MIX-seq dataset from McFarland et al. [115]. Metrics capture
separation of cells by TP53 mutation status (TP53 ARI, TP53 NMI, TP53 Silhouette)
and mixing of TP53 mutant cell lines (Entropy of Mutant Cell Line Mixing, Mutant
Cell Line Silhouette). For contrastive models, metrics were computed based on the
model’s salient latent representations. For non-contrastive models (denoted by a *),
metrics were computed on the given model’s single latent space. For each method,
the mean and standard error across five random trials are plotted. Higher values for
all metrics indicate better performance, with best performing methods highlighted in
bold. For each metric, red coloring indicates that the difference between the best and
second-best performing methods was statistically significant as determined by a two-
sample t-test with α = 0.05.
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Model Cell Line Cell Line Cell Line Entropy of Treatment

ARI NMI Silhouette Treatment Mixing Silhouette

contrastiveVI 0.977± 0.001 0.998± 0.009 0.482± 0.010 0.535± 0.014 0.983± 0.002

CLVM 0.772± 0.018 0.873± 0.020 0.265± 0.003 0.548± 0.005 0.988± 0.001

CPLVM 0.359± 0.006 0.604± 0.008 0.070± 0.003 0.403± 0.011 0.928± 0.005

CGLVM 0.468± 0.034 0.612± 0.031 0.128± 0.008 0.125± 0.011 0.870± 0.005

PCA* 0.855± 0.007 0.926± 0.006 0.424± 0.000 0.234± 0.002 0.911± 0.000

DCA* 0.918± 0.010 0.961± 0.005 0.498± 0.004 0.261± 0.009 0.935± 0.005

scVI* 0.990± 0.008 0.996± 0.010 0.435± 0.005 0.241± 0.003 0.905± 0.002

Table A.4.2: Quantitative evaluation of shared representation quality for contrastiveVI and base-
line models on the MIX-seq dataset from McFarland et al. [115]. Metrics capture
separation of cells by cell line (Cell Line ARI, Cell Line NMI, Cell Line Silhouette) and
mixing of cells by treatment type (Entropy of Treatment Mixing, Treatment Silhouette).
For contrastive models, metrics were computed based on the model’s salient latent
representations. For non-contrastive models (denoted by a *), metrics were computed
on the given model’s single latent space. For each method, the mean and standard
error across five random trials are plotted. Higher values for all metrics indicate bet-
ter performance, with best performing methods highlighted in bold. For each metric,
red coloring indicates that the difference between the best and second-best perform-
ing methods was statistically significant as determined by a two-sample t-test with
α = 0.05.
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Gene Bayes Factor

WARS 7.417964

GBP5 6.724225

GBP1 5.623212

CD74 4.926447

IL18BP 4.898846

HLA-DRA 4.747355

HLA-DPB1 4.657600

HLA-DPA1 4.498798

APOL4 4.314250

SECTM1 4.119037

HLA-DQB1 4.069433

HLA-DMA 3.902074

SOCS1 3.748992

GCH1 3.469248

FAM26F 3.448956

HLA-DQA1 3.172858

FAM20A 3.127178

FAM184B 3.107474

CRYAB 3.162540

EDNRA 3.209762

Table A.4.3: Differentially expressed genes found by totalContrastiveVI for the cluster of cells
perturbed for members of the IFN-γ pathway from Papalexi et al. [130]. As in previ-
ous work [54, 107], genes with a Bayes factor greater than 3 were taken to be differen-
tially expressed.

Protein Bayes Factor

PDL1 1.625847

PDL2 1.103953

Table A.4.4: Differentially expressed proteins found by totalContrastiveVI for the cluster of cells
perturbed for members of the IFN-γ pathway from Papalexi et al. [130]. As in pre-
vious work [54, 107], proteins with a Bayes factor greater than 0.7 were taken to be
differentially expressed.
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Gene q-value

Interferon gamma signaling Homo sapiens R-HSA-877300 2.49e-14

MHC class II antigen presentation Homo sapiens R-HSA-2132295 3.22e-14

Translocation of ZAP-70 to Immunological synapse Homo sapiens R-HSA-202430 9.55e-13

Phosphorylation of CD3 and TCR zeta chains Homo sapiens R-HSA-202427 1.77e-12

PD-1 signaling Homo sapiens R-HSA-389948 2.42e-12

Interferon Signaling Homo sapiens R-HSA-913531 3.94e-12

Generation of second messenger molecules Homo sapiens R-HSA-202433 1.21e-11

Costimulation by the CD28 family Homo sapiens R-HSA-388841 9.94e-10

Cytokine Signaling in Immune system Homo sapiens R-HSA-1280215 3.17e-09

Downstream TCR signaling Homo sapiens R-HSA-202424 5.59e-09

Table A.4.5: Top ten most enriched pathways based on differentially expressed genes between
IFNGR2 KO cells and controls from Papalexi et al. [130] identified by totalCon-
trastiveVI.
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Gene q-value

GBP1 0.000045

GBP5 0.000000

GLUL 0.001421

SMYD3 0.043339

CCNB1 0.020114

KIF20A 0.002536

PTTG1 0.020114

HLA-A 0.001982

HLA-DRB5 0.021805

HLA-DRB1 0.001136

FAM26F 0.013368

STX11 0.019532

CTSL 0.003696

TMOD1 0.004179

IL18BP 0.000989

OAF 0.013368

CEBPE 0.004532

WARS 0.000043

SOCS1 0.001864

PRR11 0.012841

CDKN2D 0.042462

ZFP36 0.045763

Table A.4.6: Differentially expressed genes found by a standard single-cell workflow between
control and NP IFNGR2 cells from Papalexi et al. [130]. Using a standard single-
cell analysis workflow (i.e., applying a Wilcoxon rank-sum test to normalized, log-
transformed counts), we computed a list of differentially expressed genes between
control and NP IFNGR2 cells. All genes in this list are false positives, as the NP cells
were not successfully perturbed by the IFNGR2 gRNA and should have similar ex-
pression patterns to control cells.
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Protein q-value

PDL1 0.016912

Table A.4.7: Differentially expressed proteins found by a Wilcoxon rank-sum test for NP
IFNGR2 cells described in the main text from Papalexi et al. [130]. Using a stan-
dard single-cell analysis workflow (i.e., applying a Wilcoxon rank-sum test to centered
log-ratio-transformed counts), we computed a list of differentially expressed proteins
between control and NP IFNGR2 cells. We find that this workflow identifies PDL1 as
differentially expressed. We note that this result is a false positive, as the NP IFNGR2
and control cells should behave similarly.

Gene q-value

Cell Cycle Homo sapiens R-HSA-1640170 1.56e-27

Cell Cycle, Mitotic Homo sapiens R-HSA-69278 1.40e-26

Mitotic G1-G1/S phases Homo sapiens R-HSA-453279 7.23e-13

S Phase Homo sapiens R-HSA-69242 5.80e-12

G1/S Transition Homo sapiens R-HSA-69206 7.62e-12

Mitotic Prometaphase Homo sapiens R-HSA-68877 1.05e-11

G1/S-Specific Transcription Homo sapiens R-HSA-69205 3.03e-11

Immune System Homo sapiens R-HSA-168256 3.40e-11

Activation of ATR in response to replication stress Homo sapiens R-HSA-176187 7.38e-10

Cell Cycle Checkpoints Homo sapiens R-HSA-69620 7.51e-10

Table A.4.8: Top ten most enriched pathways based on differentially expressed genes between
IFNGR2 KO cells and controls from Papalexi et al. [130] identified by a Wilcoxon rank-
sum test.



5
P R O B A B I L I S T I C M O D E L I N G O F S I N G L E - C E L L B I S U L F I T E
S E Q U E N C I N G D ATA

Our discussion in the previous chapter largely concerned scRNA-seq (and, to a lesser
extent, CITE-seq). For these modalities a considerable body of literature exists address-
ing the question of how to distinguish variations corresponding to underlying cellular
state from undesirable noise due to technical factors. In an ideal world, models designed
to analyze data from one modality could be re-used to study measurements of other
aspects of cellular state (e.g. from epigenomic assays). However, the distinct molecular
mechanisms exploited by different assays result in corresponding distinct data generating
distributions, and models designed for one modality cannot naively be applied to other,
emerging modalities. In other words, the development of new assays necessitates the de-
velopment of corresponding computational models with structures that reflect the unique
sources of variation in each modality.

In this chapter we illustrate the above principle via the development of a generative
model for the analysis of chromosomal DNA methylation (DNAm) data. Chromosomal
DNAm at cytosine residues is known to play a critical role in a broad range of biologi-
cal processes, including cellular differentiation, genomic imprinting, and X-chromosome
inactivation [61, 116, 135]. Moreover, abnormalities in DNAm have been implicated in
numerous diseases, including cancer and Alzheimer’s disease [11, 37]. As a result, sig-
nificant efforts are being made to develop methods for measuring DNAm levels, with
bisulfite-sequencing emerging as the gold standard technique for this task [128].

At the core of bisulfite sequencing lies two chemical processes (Figure 5.1). First, ge-
nomic DNA is treated with sodium bisulfite, which results in unmethylated cytosine
residues being converted to uracil. Second, after PCR amplification, these new uracil
residues are further converted to thymine. Notably, bisulfite treatment does not affect
methylated cytosines. Thus, by comparing bisulfite-treated DNA with untreated DNA -
i.e., identifying cytosines in untreated DNA sequences that present as thymines in corre-
sponding treated sequences - we may infer the methylation status of individual cytosine
residues.

Toward characterizing heterogeneity in the epigenomic landscape, recent works have
developed single-cell bisulfite sequencing (scBS-seq) protocols [3, 100, 111, 114, 123, 126,
147]. Despite the promise of scBS-seq, small amounts of initial genomic DNA starting
material per cell and the destructive nature of bisulfite treatment cause genuine epige-
netic variability to be entangled with nuisance variations unrelated to underlying cellular
states. Notably, because of the divergent molecular processes involved in producing the
data, these technical variations are distinct from those found in e.g. scRNA-seq. Thus, we

70
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Figure 5.1: Measuring DNA methylation via bisulfite-conversion. Genomic DNA first undergoes
bisulfite treatment, which causes unmethylated cytosine residues to deaminate into
uracil residues. On the other hand, methylated cytosines are not affected by this treat-
ment. During PCR amplification, uracil residues are further converted into thymine.
The methylation status of individual cytosines can then be inferred by comparing re-
sults from the original DNA sequence and the post-treatment sequence.

cannot simply reuse previously developed models designed for other modalities, and new
models with distinct structures are required to obtain robust insights from rich scBS-seq
datasets. Yet, prior to this author’s work relatively little attention has been devoted by the
computational community to studying scBS-seq.

Here, we present methylation variational inference (MethylVI), a probabilistic model-
ing framework for scBS-seq based on deep generative modeling techniques (Figure 5.2).
MethylVI learns probabilistic representations of cells’ underlying biological state from
raw methylation counts while intrinsically controlling for known technical sources of
variation in scBS-seq. MethylVI stands out from previous probabilistic models of scBS-
seq count data by being readily applicable to a wide variety of core scBS-seq analysis
tasks using a single model.

The rest of this chapter is organized as follows. We first provide a detailed descrip-
tion of the MethylVI model (Section 5.1), as well as an extended model that incorporates
cell type label information into the modeling process (Section 5.2). We then demonstrate
MethylVI’s merits by benchmarking its performance on a number number of core scBS-
seq analysis tasks, finding that it compares favorably to previous specialized workflows
for individual tasks (Section 5.3). In this section we also provide a case study applying
our model to analyze a recently released scBS-seq dataset exploring the relationship be-
tween methylation and aging in human frontal cortex neurons [31], and we find that
MethylVI uncovered previously unreported functionally enriched cell-type-specific coor-
dinated changes in gene body methylation and gene expression with age. We end this
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chapter with a brief reflection on our findings and potential areas for future research
(Section 5.4).

5.1 the methylvi model

Here, we present the MethylVI model in more detail. We begin by describing the model’s
generative process and then the model’s inference procedure.

5.1.1 Generative process

For a given cell i, single-cell bisulfite sequencing experiments output a set of binary values
representing the methylation status at a subset of cytosine residues. Due to technological
limitations, these measurements exhibit highly sparse coverage (i.e., for most cytosines
we have missing values), and we are not guaranteed to measure at the same cytosines
across cells. Thus, in practice for many analysis tasks (e.g. clustering, cell type annotation,
etc.) it is often preferred to aggregate measurements across larger pre-specified genomic
regions (e.g. 100 kilobase pair windows, gene body regions etc.). Moreover, due to their
distinct roles [63, 99], CpG and CpH methylation are often analyzed separately. Thus, we
may regard the output of a bisulfite sequencing experiment for a given cell i as two pairs
of d-dimensional count vectors (yG

i , nG
i ) and (yH

i , nH
i ). Here yG

ij represents the number of
methylated cytosines at CpG sites in region j and nG

ij denotes the total number of profiled
CpG sites in region j. yH

ij and nH
ij are defined analogously for CpH sites. For notational

convenience, we use a C superscript (e.g. yC
ij) to denote an arbitrary specific methylation

context (i.e., CpG or CpH). We also drop the superscript notation as a shorthand to denote
the concatenation of a set of count features from all contexts (e.g. yi ∈ N2d refers to a
concatenation of the vectors yG

i and yH
i ).

Let zi be an ℓ-dimensional set of latent variables with ℓ << d capturing the underlying
methylation state of cell i. It is known that DNAm exhibits significant local spatial corre-
lation. Thus, given zi and the aggregated measurements described previously, we could
potentially model yC

ij as being drawn from a Binomial distribution, where the probability
of methylation is assumed to be constant for all cytosines in a given region. However,
previous works have found that methylation read counts generated by bisulfite sequenc-
ing technologies exhibit greater dispersion than would be expected based on a Binomial
model [40, 49, 177]. To account for this overdispersion, we thus choose to model our ob-



5.1 the methylvi model 73

Figure 5.2: Overview of MethylVI. a, For each cell, an scBS-seq experiment produces a set of bi-
nary values indicating whether a cytosine is methylated (red) or unmethylated (blue).
To accommodate variable cytosine coverage across cells, cytosine-level measurements
are aggregated across predefined genomic regions (e.g., gene bodies) to produce two
values per region: the number of methylated cytosines (red) and total number of cov-
ered cytosines (purple). These aggregated region features are used as input to the
MethylVI model. b, The MethylVI algorithm. For each cell i, a vector yi containing
the number of methylated cytosines at each region and a vector ni containing the to-
tal number of profiled cytosines at each region are fed as inputs to the model. These
vectors are transformed into the posterior distribution of zi, a lower-dimensional repre-
sentation of the given cell’s state. c-d, These latent representations can be used as input
to clustering or visualization algorithms (c) and enable integration of datasets across ex-
perimental conditions when corresponding covariates are provided as model inputs (d).
e-f, A cell’s latent representation is transformed to the parameters of a beta-binomial
distribution, which can assist with feature-level tasks, such as estimating normalized
methylation levels µ within genomic regions (e) or performing differentially methy-
lated gene testing (f). g, Our scvi-tools [53] implementation facilitates further exten-
sion of MethylVI’s capabilities using components from other scverse [165] probabilistic
models developed for additional analysis tasks, but which were originally designed for
other modalities.
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served counts conditioned on the latent variables as being drawn independently via the
following hierarchical process:

zi ∼ N(0, Id)

µC
ij = fθC(zi, si)j

pC
ijk ∼ Beta(µC

ij,γ
C
j )

yC
ijk ∼ Ber(pC

ijk)

yC
ij =

∑
k

yC
ijk

Here fθC : Rℓ → Rd denotes a neural network parameterized by θ that maps a cell’s latent
representations to the full dimensionality of all genomic regions for a given context C. si
denotes the (one-hot-encoded) batch that cell i was collected in. The parameter γC ∈ RD

represents a vector of region-specific dispersion parameters estimated using variational
inference for the context C. For cell types that exhibit nontrivial levels of CpH methylation
(e.g. neurons), we assume that zi captures a unified representation of methylation state
across both CpG and CpH contexts; otherwise, we restrict our generative process to only
consider CpG context methylation. We depict our generative process in graphical model
notation in Figure 5.1.

5.1.2 Inference

Because the integrals required to compute the model evidence p(yi | ni, si) are ana-
lytically intractable, we cannot compute MethylVI’s posterior distribution directly using
Bayes rule. Thus, we instead leverage variational inference [16] to learn an approximate
posterior distribution.

First, we note that inference over the full generative process is not required as our condi-
tional likelihood p(yC

ij | zi, si,n
C
ij) has a closed-form density, thus allowing us to integrate

out the latent variables pij. Specifically, the density specified by p(yC
ij | zi, si,n

C
ij) is that

of a Beta-Binomial distribution with mean and region-specific dispersion parameters µC
ij

and γC
j , respectively.

Next, we approximate the true posterior p(zi | yi,ni, si) with a mean-field variational
distribution qϕ(zi | yi,ni, si) chosen to be Gaussian with a diagonal covariance matrix.
Here ϕ denotes a set of learned weights used to infer the parameters of our approximate
posterior. In particular, similar to the original VAE framework [87], the mean and variance
parameters of each dimension in our approximate posterior distribution are obtained as
the output of an encoder neural network that takes the number of methylated cytosines
and total number of cytosines at each genomic region as input. We note that each factor in
our approximate posterior distribution belongs to the same family as the corresponding
prior distribution (e.g., qϕ(zi | yi,ni, si) is normally distributed). Moreover, the parame-
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Figure 5.1: The MethylVI generative process. We assume that the probability of an individual
cytosine k in region j being methylated (pjk) is generated conditional on a cell’s under-
lying state (z). The methylation statuses of individual cytosines (yjk) are then summed
up to obtain the total number of methylated cytosines in a region (yj). Shaded nodes
denote observed values, while unshaded nodes correspond to hidden values. Square
nodes denote variables whose values are computed deterministically from random vari-
ables.
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ters ν of our generative model pν(yi, | zi,ni, si) are realized as a decoder neural network.
We can then optimize the parameters of our model via the evidence lower bound (ELBO):

p(yi | ni, s) ⩾ Eq(zi|yi,ni,si) logp(yi | zi,ni, si) −DKL(q(zi | yi,ni, si) || p(zi)),

using stochastic gradients (i.e., the reparameterization trick [87]), where the parameters
of our approximate posterior and generative model are learned simultaneously. As we
assume that data for each cell is generated independently and identically from the same
process, we can obtain an objective for a full dataset by simply summing up the bound
above across the cells in a given dataset. During optimization p(yi | zi,ni, si) was com-
puted using the closed-form expression for the beta-binomial distribution implemented
in Pyro [15]. Similarly, as our variational posterior and prior distributions are both Gaus-
sian, we were able to compute the KL divergence term in the ELBO analytically. Finally, in
our objective function the region-specific dispersion terms in the beta-binomial likelihood
were treated as global variables to be optimized via variational Bayes. At each iteration of
training, a random mini-batch of 128 cells was selected, an estimation of the ELBO was
computed based on the mini-batch, and model parameters were subsequently updated
using automatic differentiation.

For all of the results presented in this manuscript, MethylVI models were trained using
80% of the cells in a given dataset, with the remaining 20% serving as a validation set to de-
termine the number of epochs for early stopping. All MethylVI models were trained with
the Adam [86] optimizer using the default parameters in the scvi-tools [53] package. All
neural network models were implemented using feedforward layers with standard activa-
tion functions: rectified linear unit (ReLU) activations were used between hidden layers,
and sigmoid activations were used to constrain the beta-binomial mean and dispersion
parameter estimates to lie between zero and one. The same neural network architecture
and hyperparameter values were used for all experiments; further details may be found
in Supplementary Note 3.

5.2 the methylanvi model

The base MethylVI model described in Section 5.1 is unsupervised, i.e., it does not incor-
porate cell type information into the modeling process. Yet, previous work has demon-
strated that incorporating such labels when available can lead to superior performance
on downstream analysis tasks. To this end, adapted ideas from the label-aware single-cell
ANnotation using Variational Inference (scANVI) model [180] for RNA-seq to obtain a cor-
responding MethylANVI model for BS-seq. In this section we present the MethylANVI
generative process in detail followed by the model’s inference procedure.
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5.2.1 Generative process

The MethylANVI generative process extends that of MethylVI to explicitly encode avail-
able cell type label information into the generative model. To do so, we first define c as the
expected proportion of cells for each cell type in our data. For all of our experiments, we
place a non-informative uniform prior on this variable, which has successfully been used
in previous work [180]. We then assume that a given cell i’s cell type label ci is sampled
from a multinomial distribution determined by c. Next, we assume that a k-dimensional
set of latent variables ui is generated that captures within-cell-type variations in methyla-
tion. By combining the cell type label ci for a given cell and within-cell-type state encoded
in ui, we then generate a second set of latent variables zi that reflects both inter- and intra-
cell-type variations. With zi in hand our generative process then proceeds as in MethylVI,
yielding:

ci ∼ Multinomial(c)

ui ∼ N(0, Id)

zi ∼ N(fµz (ui, ci), fσz (ui, ci))

µC
ij = fθC(zi, si)j

pC
ijk ∼ Beta(µC

ij,γ
C
j )

yC
ijk ∼ Ber(pC

ijk)

yC
ij =

∑
k

yijk

Here f
µ
z and fσz are neural networks that parameterize the conditional distribution of zi

given ui, and all other notation is defined as in the MethylVI generative process.

5.2.2 Inference

Similar to MethylVI, we perform inference for MethylANVI using variational inference.
We first assume that our variational distribution factorizes as

qϕ(ci, zi,ui | yi,ni, si) = qϕ(zi | yi,ni, si)qϕ(ci | zi)qϕ(ui | ci, zi).

As in Xu et al. [180] we can then derive two variational lower bounds: one in the case
for when the cell type label ci is observed for the cell, and another for when the cell type
label is not available. Derivations for these lower bounds can be found in Supplementary
Note 4. We then optimize the sum of these bounds via stochastic gradient ascent and
autoencoding variational bayes.
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5.3 results

5.3.1 MethylVI integrates scBS-seq data from multiple protocols into a unified latent space

With improvements in bisulfite sequencing protocols, the complexity of newly generated
scBS-seq datasets has continued to increase over time. For example, recent analyses have
considered cells taken from multiple samples [113], profiled using multiple sequencing
protocols [102], or collected across multiple laboratories [126]. As a result, naive analyses
of such datasets may be confounded by batch effects, i.e., systematic variations between
datasets due to experimental conditions rather than meaningful biological phenomena.
To avoid spurious conclusions when analyzing new large-scale scBS-seq datasets, com-
putational methods are thus needed to integrate data across batches while preserving
underlying biological variations. Despite the many data integration methods developed
for other single-cell modalities (see Luecken et al. [110]), no previous works have specifi-
cally addressed data integration for scBS-seq.

We thus next assessed MethylVI’s ability to integrate data collected under different ex-
perimental conditions via the model’s assumption of independence between cells’ latent
representations and provided experimental covariates. For our evaluation we considered
scBS-seq data from the dentate gyrus gathered as part of a larger mouse brain methylome
atlas [102]. As gene body methylation is commonly [102, 111, 154] used to annotate neu-
ronal cellular states, we considered CpG and CpH gene body methylation features for this
experiment. Notably, the measurements in this dataset, taken using two bisulfite sequenc-
ing protocols (snmC-seq2 [114] and sn-m3C-seq [95]), exhibit both undesirable separation
due to sequencing protocol and meaningful separations due to cell type (Figure 5.1a).

To mitigate the technical effects between protocols, we trained MethylVI on this data
using protocol label as an additional covariate. We found in MethylVI’s integrated latent
space that cells mixed across batches while separating by cell type, as desired (Figure 5.1b).
As no previous methods have been proposed specifically for scBS-seq data integration, we
benchmarked MethylVI’s performance on this task by comparing against four integration
methods originally developed for scRNA-seq data that we applied to normalized methyla-
tion features computed via the widely used [31, 102, 113, 154, 168, 184] ALLCools Python
package for preprocessing scBS-seq data [102]. These specific methods (fastMNN [65],
Scanorama [68], Harmony [89], and Seurat [150]) were chosen for our analysis due to
their strong performance in a recent benchmark of scRNA-seq data integration methods
[110]. Qualitatively, we observed that some baseline methods failed to properly mix cells
across batches (Figure A.5.1).

To systematically compare across methods, we used the previously established single-
cell integration benchmarking (scIB) suite of metrics (Section 5.B) [110]. In short, scIB
assesses the quality of integration results in terms of both mixing across batches (“Batch
correction”) and conservation of biological variation (“Bio-conservation”); a successful
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Figure 5.1: Benchmarking MethylVI vs baseline integration methods for single-cell bisulfite
sequencing data. a-b, UMAP visualizations of n = 10, 726 single-cell methylomes from
the dentate gyrus region of the mouse brain collected using two sequencing protocols
(snmC-seq2 and snm-3C-seq). Plots depict the data (a) pre-integration and (b) post
integration with MethylVI. Cells colored by sequencing protocol (top) and cell type
labels provided by Liu et al. [102] (bottom). c, Quantitative comparison of MethylVI
with baseline integration methods using the single-cell integration benchmarking (scIB)
suite of metrics [110]. Individual metrics (circles) were scaled to lie between 0 and 1,
and overall scores (bars) were computed as in Luecken et al. [110]. Higher values for all
metrics indicate better performance. See Section 5.B for further detail on computation
of the scIB metrics.
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integration should achieve good mixing while also conserving biological variation. We
found that MethylVI achieved the strongest performance for both bio-conservation and
batch correction, leading to the highest overall scIB score (Figure 5.1c).

5.3.2 Exploring methylomic differences between cell populations with MethylVI

A primary motivation for performing scBS-seq experiments is to uncover the epigenetic
phenomena that distinguish different populations of cells. However, the sparse and noisy
nature of data from high-throughput scBS-seq experiments may confound such analyses
if not explicitly taken into account. By taking such nuisance factors into account in the
modeling process, MethylVI may better disentangle genuine epigenetic variability from
technical biases in scBS-seq data and potentially recover more robust insights on differ-
ences in methylomic features between cell populations. To validate MethylVI’s capabilities
on such feature-level analysis tasks, we considered an scBS-seq dataset of mouse frontal
cortex neurons from Luo et al. [111] collected using snmC-seq.

We first used this dataset to evaluate the robustness of MethylVI’s estimates of methy-
lation levels to varying levels of sparsity. To do so, we produced corrupted copies of our
dataset by randomly setting the coverage level for a given region in a cell to zero for a
range of probabilities (10%-50%); we then trained MethylVI models on these corrupted
datasets. Post-training, we assessed MethylVI’s ability to recover the missing values by
computing the median absolute error between the model’s estimates of the number of
methylated cytosines versus the true number of methylated cytosines for each corrupted
measurement. To benchmark MethylVI’s performance on this task, we considered three
algorithms originally developed to impute missing measurements in scRNA-seq data:
MAGIC [162], ALRA [98], and DrImpute [57]. We found that MethylVI strongly outper-
formed all baseline methods on CpG features (Figure A.5.2a). For CpH features, MethylVI
largely outperformed baseline methods, with the sole exception of MAGIC, which slightly
outperformed MethylVI at the lowest level of noise (Figure A.5.2b).

We further assessed the quality of MethylVI’s estimates of methylation levels by in-
vestigating their agreement with prior biological knowledge. Gene body methylation in
neurons is known to be anticorrelated with gene expression, with non-CpG methylation
exhibiting a particularly strong relationship [63, 120]. Thus, for marker genes established
previously via RNA-seq measurements, we would expect clear differences in CpH methy-
lation between cells from a given marker’s corresponding cell type compared to other cell
types. To quantify this phenomenon, we conducted Kolmogorov-Smirnov (KS) tests to
assess the difference between gene body CpH methylation levels for each marker’s corre-
sponding cell type versus other cell types, where methylation levels were computed using
the normalization procedure in ALLCools vs MethylVI. Given prior knowledge on the re-
lationship between CpH methylation and gene expression, we reasoned that higher KS
test statistic values would indicate better recovery of biological ground truths. We found
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Figure 5.2: Analyzing genomic region methylation features with MethylVI. a, Kolmogorov-
Smirnov (KS) statistics quantifying differences in known marker genes’ CpH gene body
methylation levels between cells from a given markers’ corresponding cell type vs other
cell types based on ALLCools’ (x axis) and MethylVI’s (y axis) estimates of gene body
methylation. b, MethylVI’s estimated CpH Arpp1 gene body methylation levels for
excitatory neurons vs caudal ganglionic eminence (CGE) and medial ganglionic emi-
nence (MGE) derived inhibitory neurons. c, MethylVI’s estimated CpH Adgra3 gene
body methylation levels for CGE-derived inhibitory neurons as well as Pvalb+ and
Sst+ MGE-derived inhibitory neurons. d-h, Benchmarking MethylVI and baseline dif-
ferentially methylated gene (DMG) testing procedures when applied to excitatory vs
inhibitory neurons from Luo et al. [111] based on consistency with results from bulk
data [120]. Agreement was quantified using Pearson’s R (d). For MethylVI and scMET
the mean and standard error across five random trials are plotted. Scatter plots (e-h)
depict test statistics for each CpH gene feature as computed by MethylVI and baseline
methods on the single-cell data (x axes) vs corresponding bulk data effect sizes (y axes).
i, Volcano plot summarizing MethylVI’s DMG results for excitatory versus inhibitory
neurons. Green points indicate likely excitatory neuron markers, while purple points
denote likely inhibitory markers using an absolute Bayes factor of three and minimum
effect size of 0.01 as cutoffs. Black gene names indicate previously established markers,
and red names indicate new potential markers uncovered by MethylVI. j, Heatmap
depicting gene body mCH levels estimated by MethylVI for previously known marker
genes and a subset of new potential markers (enclosed in red) identified by MethylVI.
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(Figure 5.2a) that MethylVI’s estimated methylation levels indeed consistently resulted in
higher KS statistics compared to ALLCools (p < 1× 10−6, binomial test).

Moreover, to illustrate how MethylVI may facilitate new biological insights, we in-
spected the model’s estimated CpH methylation levels for these known markers in more
detail, and we uncovered trends not originally reported in Luo et al. [111]. For example,
we found that MethylVI’s estimated CpH methylation levels for Arpp21, reported pre-
viously as a pan-excitatory marker, exhibited a clear bimodal pattern among inhibitory
neurons that was not present in ALLCools’ corresponding estimated methylation levels
(Figure A.5.3). Upon further inspection, we found that this bimodality was the result of
substantial differences in MethylVI’s estimated methylation levels between caudal gan-
glionic eminence (CGE) and medial ganglionic eminence (MGE) derived inhibitory neu-
rons (Figure 5.2b). Similarly, we found that Adgra3, previously noted in Luo et al. [111]
solely as a CGE-derived inhibitory neuron marker, exhibited comparable CpH methyla-
tion levels in MGE-derived inhibitory neuron populations, with notable differences be-
tween Pvalb+ vs Sst+ MGE-derived neurons (Figure 5.2c). We confirmed the robustness
of these findings by verifying that these trends were present in a subsequent dataset [102]
collected using a later generation of the snmC-seq protocol [114] (Figure A.5.4), suggest-
ing that MethylVI’s methylation level estimates may indeed facilitate novel, reproducible
biological findings.

To more systematically identify methylomic differences between populations of cells,
we next applied MethylVI’s probabilistic model to construct a differentially methylated
gene (DMG) test based on Bayes factors that naturally controls for noise and technical
effects in the data (Section 5.A). To evaluate the quality of our testing procedure, we
applied it to find DMGs between excitatory and inhibitory neurons from the Luo et al.
[111] snmC-seq data. Analogous to previous works on other single-cell modalities [7,
107], for this task we considered results obtained using a bulk BS-seq testing workflow
from purified excitatory and inhibitory neuron populations [120] as a ground truth for
comparison (Section 5.B). We benchmarked MethylVI’s agreement with the bulk results
against three baseline methods used in previous scBS-seq analyses: the Wilcoxon rank-
sum test applied to normalized data as done in ALLCools, the Wald-test-based procedure
of DSS [49], and scMET [79], a probabilistic model specifically designed for scBS-seq
representing the current state-of-the-art.

We found that MethylVI and scMET consistently achieved the strongest agreement with
the bulk results as measured by Pearson’s R (Figure 5.2d). Moreover, due to the large num-
ber of cells, we found that the Wilcoxon test and DSS produced highly inflated q-values
(i.e., corrected p-values) and thus are likely prone to a significant number of type 1 er-
rors using standard cutoffs for statistical significance (Figure 5.2e-f; SUPLEMENT). On
the other hand, MethylVI and scMET’s test statistics did not face this issue (Figure 5.2g-h;
Figure A.5.5). Notably, while scMET and MethylVI exhibited similarly strong agreement
with bulk results, we found that scMET’s performance came at the cost of a far longer
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runtime than other tests: while MethylVI could be trained and applied in less than five
minutes, scMET required over twenty-four hours using the authors’ implementation, in-
dicating that scMET is not suitable for analyzing larger-scale BS-seq datasets.

Finally, we briefly inspected the specific genes called by MethylVI as differentially
methylated with an absolute Bayes factor > 3 between the excitatory vs inhibitory neu-
ron populations. We found that MethylVI’s results were strongly enriched for the pu-
tative markers described in the original study [111] (Figure A.5.6), further suggesting
that MethylVI is capturing meaningful biological differences. Beyond these markers, we
found that MethylVI identified a number of additional CpH gene body features as dif-
ferentially methylated between excitatory and inhibitory neurons (Figure 5.2i-j), some of
which have previously been validated via other modalities. For example, MethylVI identi-
fied Adcyap1r1 as a marker (i.e., hypomethylated) for inhibitory neurons, consistent with
previous immunostaining results that PAC1, the protein encoded by Adcyap1r1, is more
highly expressed in inhibitory neuron populations compared to excitatory ones [185]. As
another example, MethylVI identified Arc as a marker for excitatory neurons, aligning
with data from a recent scRNA-seq study of the motor cortex, which found significantly
higher expression of Arc in excitatory neurons compared to inhibitory [10].

Considered together, these results illustrate how MethylVI can help explore methylomic
differences between cell populations profiled with scBS-seq.

5.3.3 Extending MethylVI via the scverse for scBS-seq reference atlas mapping

To facilitate interoperability across different single-cell computational tools, new software
ecosystems have emerged that provide user-friendly data structures and application pro-
gramming interfaces (APIs) for facilitating a variety of downstream single-cell analysis
tasks. In particular, the Python-based scverse [165] ecosystem’s core data structures [21,
166] and probabilistic modeling libraries [53] have become the foundation for a diverse
array of single-cell analysis tools, with applications including reference atlas mapping
[108], isolating perturbation-induced variations [174], and integration of data from multi-
ple modalities [6]. Though such capabilities would also be useful in the analysis of scBS-
seq data, many of these models were originally designed for a specific subset of single-cell
modalities (e.g., RNA-seq and/or ATAC-seq) and cannot be applied to analyze scBS-seq
in their current form. To fill this need, here we illustrate how MethylVI can be integrated
with previous scverse-based probabilistic modeling tools to seamlessly extend their func-
tionality to handle scBS-seq data. As a case study, we consider the task of reference atlas
mapping.

Consortia such as the Human Cell Atlas [134] and HuBMAP [73] now routinely gen-
erate large-scale, single-cell reference atlases to improve understanding of cellular het-
erogeneity across tissues, organs, developmental stages and other conditions [5, 34, 142,
145]. The construction of such atlases has enabled a major paradigm shift in single-cell
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Figure 5.3: Building and querying a human frontal cortex methylome reference atlas via transfer
learning with MethylVI. a-c, High-level depiction of our reference atlas mapping work-
flow. First, a suitable set of pre-existing datasets is collected to serve as a reference atlas
(a). A MethylVI/MethylANVI model is then trained to integrate the reference datasets,
and, post-training, the model can be fine-tuned with a new query dataset using pre-
viously proposed [108] transfer learning (TL) approaches (b). The fine-tuned model
can then be applied to project a new query dataset onto the integrated reference (c). d,
UMAP embeddings of six frontal cortex BS-seq datasets collected to serve as a frontal
cortex reference atlas. Plots depict the reference data after integration via MethylANVI
and are colored by sample (left) and cell type (right). e, UMAP embeddings depicting
the result of querying the integrated atlas with a new dataset via transfer learning (TL).
Plots colored by whether a cell was in the initial reference versus the query dataset (left)
and cell type (right). f, Quantitative assessment of our MethylANVI plus TL approach
compared to de novo integration procedures.
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dataset analyses: rather than analyzing each new dataset from scratch, newly generated
datasets can be automatically annotated and contextualized using insights from an ap-
propriate reference. Initial cell atlas efforts generally focused on transcriptomic [117, 142,
157] and chromatin accessibility [36, 41, 51] measurements due to earlier advances in scal-
ing up scRNA-seq and scATAC-seq protocols. However, with recent advances in bisulfite
sequencing, single-cell methylation atlases are also beginning to emerge [101, 102, 154].

Because the individual datasets that comprise a reference atlas may be collected under
different technical and biological conditions, constructing a unified reference atlas neces-
sitates the use of single-cell data integration algorithms to overcome batch effects [110].
Moreover, when analyzing a newly generated “query” dataset with respect to a reference
atlas, it is useful to quickly map the query data to the reference without requiring po-
tentially computationally expensive de novo reintegration of all datasets in the reference.
Consequently, new algorithms for efficiently mapping query datasets to reference atlases
have emerged [67, 78, 108]. Yet, these previous efforts have mostly focused on other single-
cell modalities, leaving unaddressed reference atlas mapping for scBS-seq.

To facilitate reference atlas mapping for scBS-seq data, we thus extended our base
MethylVI model using two scverse-based tools. Incorporating available cell type label
information into the modeling process has been demonstrated to yield superior reference
atlas integration in other single-cell modalities compared to unsupervised approaches
[110]. To this end, we first adapted MethylVI to account for cell type labels using tech-
niques from the label-aware scANVI model [180] for RNA-seq to obtain a corresponding
MethylANVI model for BS-seq (Section 5.2). Second, to efficiently map query datasets
to integrated references, we further extended our model for fast reference mapping via
the scArches transfer learning (TL) approach [108] (Figure 5.3a-b), which enables reuse
of pretrained models by fine-tuning only a subset of weights necessary for integrating a
query dataset with the reference. After fine-tuning, a query dataset can then be efficiently
projected onto the reference for further analysis (Figure 5.3c). Notably, by leveraging the
modularity of our codebase and the scverse ecosystem, these extensions required minimal
(< 50 lines) of additional code.

To validate our extended model, we considered a collection of human frontal cortex
scBS-seq datasets originally preprocessed in Luo et al. [113], consisting of data collected
in six batches from four donors using a mix of three scBS-seq protocols (snmC-seq, snm-
3C-seq, and snmC2T-seq). We began by integrating these six datasets into a unified refer-
ence using MethylANVI (Figure 5.3d). Subsequently, we fine-tuned our reference model
following the TL approach outlined in Lotfollahi et al. [108] to map a query dataset col-
lected from a fifth donor using a protocol not present in the reference (snmC-seq2). We
found that cells from the query dataset were well-integrated with the reference and that
cells primarily separated by cell type as desired (Figure 5.3e).

We benchmarked our MethylANVI plus transfer learning approach against Methy-
lANVI, MethylVI, and other baseline integration methods trained in a de novo fashion,
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where reference datasets were reintegrated from scratch along with the query. Qualita-
tively, we once again found that some baseline integration methods not originally de-
signed for BS-seq failed to properly integrate cells across batches (Figure A.5.7). More-
over, quantitatively we found using the scIB metrics that our approach exhibited a minor
degradation in performance compared to de novo MethylANVI integration but otherwise
outperformed all non-MethylANVI-based de novo approaches (Figure 5.3f). Notably, in
agreement with findings from other modalities, we found that label-aware integration (i.e.,
with MethylANVI) outperformed fully unsupervised integration (i.e., with MethylVI).

To further validate the robustness of our approach, we reran this experiment while
holding out subpopulations of cells in the reference data while retaining them in the
query. Ideally, our model would integrate cell types shared between the reference and the
query while separating the previously unseen cell types into distinct clusters. We found
(Figure A.5.8) that our approach indeed mixed cell types shared between the reference
and query while segregating the held out cell types.

These results demonstrate that MethylVI facilitates accurate reference atlas mapping
for scBS-seq. More broadly, these results highlight how our modeling framework can be
extended to handle additional downstream analysis tasks via integration with other tools
in the scverse ecosystem.

5.3.4 MethylVI resolves cell-type-specific changes with age in frontal cortex neurons

Epigenetic changes are well-known hallmarks of the aging process [106, 159]. Yet, most
prior studies of the relationship between DNAm and aging have relied on bulk DNAm
measurements [12, 60], and the precise details of the relationship between aging, changes
in DNAm, and any corresponding downstream functional consequences remain poorly
understood. Thus, as a final demonstration of MethylVI’s capabilities, we applied it to
single-cell methylome data from post-mortem human frontal cortex samples from young
adult (i.e., less than 30 years old) and older (i.e., greater than 70 years old) donors collected
by Chien et al. [31] using snmCT-seq [112]. As in our previous experiments, we used CpG
and CpH gene body methylation features as inputs to our model.

After training MethylVI on this dataset, we began our analysis by visualizing the
model’s latent space. In agreement with Chien and colleagues’ original results using
100kb window features, we observed that aging-related changes in gene body methy-
lation appeared stronger in excitatory neuron subtypes compared to inhibitory neurons
or glial cells (Figure 5.4a-c). For example, we observed that a cluster of intra-telencephalic
neurons in middle cortical layers characterized by hypomethylation of TSHZ2 (L4-5IT
TSHZ2) exhibited a particularly strong shift between cells from older vs younger donors.
We then proceeded by applying MethylVI to better understand the epigenetic changes in
this neuron subtype with age.
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Figure 5.4: Applying MethylVI to analyze cell-type-specific aging-related epigenomic changes
in frontal cortex neurons. a-c, UMAP visualizations of MethylVI’s embeddings of gene
body methylation levels from n = 54, 779 cells profiled using snmCT-seq. Plots colored
by high-level cell types (a), excitatory neuron subtypes (b), and by young vs old donors
(c). d-g, Exploring epigenomic changes with age in L4-5 IT TSHZ2 neurons. Mean
gene body methylation levels were estimated using MethylVI for CpH (d) and CpG
(e) methylation for young donors (x axes) and older donors (y axes). Heatmap in (f)
depicts MethylVI-estimated CpG gene body methylation levels for genes related to
synaptic structure and neuron differentiation. Methylation levels for each feature were
log-transformed and scaled to have a maximum value of one and minimum value of
zero for visualization. Bar plots in (g) depict gene ontology enrichment results based
on MethylVI’s differentially methylated gene test for CpG gene body methylation and
differentially expressed gene test results provided by Chien et al. [31].
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To do so, we first inspected MethylVI’s estimated CpH (Figure 5.4d) and CpG (Fig-
ure 5.4e) gene body methylation levels in L4-5IT TSHZ2 neurons. We found that changes
in both CpH and CpG gene body methylation in older brains compared to younger
ones largely consisted of increases in methylation (i.e., hypermethylation) rather than
hypomethylation (p < 0.01, binomial test). We also found that changes in CpG methyla-
tion levels tended to be of larger magnitude than CpH (Figure A.5.9), in agreement with
previous findings that CpH methylation accumulation in neurons is largely restricted to
an early developmental window [85, 99].

Among the genes estimated by MethylVI to exhibit the greatest increases in CpG gene
body methylation with age, we observed a substantial number of genes related to neu-
ron differentiation and synaptic organization (Figure 5.4f). To confirm the significance of
this finding, we applied gene ontology enrichment analysis to the results of MethylVI’s
DMG test, and we indeed observed statistically significant enrichment (corrected p values
< 0.05) for corresponding pathways related to neuron morphogenesis and synaptic struc-
ture (Figure 5.4g). We compared our results obtained with MethylVI vs those obtained via
the ALLCools normalization and DMG analysis workflow. Notably, we found that ALL-
Cools’ normalization procedure did not recover similarly stark differences in methylation
between older and younger neurons for neuronal differentiation and synaptic function
genes (Figure A.5.10), and that ALLCools’ results did not exhibit functional enrichment
for any biological processes.

Given the discrepancy between MethylVI and ALLCools’ results, to validate MethylVI’s
findings we assessed their agreement with paired transcriptomic measurements collected
as part of the snmCT-seq assay. Specifically, given the negative correlation between neu-
ronal gene body methylation and gene expression, we would expect that the pathways
identified by MethylVI would exhibit corresponding decreases in gene expression. We
found that downregulated genes with age for this cell type were indeed enriched for
neuronal differentiation and synaptic function pathways (Figure 5.4g), suggesting that
MethylVI successfully recovered age-related changes in gene body methylation that were
missed by ALLCools.

To understand whether the epigenomic changes uncovered by MethylVI reflected shared
changes across cell types or were a cell-type-specific phenomenon, we subsequently re-
peated our previous analysis for each excitatory neuron subtype. We found upper cortical
layer neurons (L2-4IT) and an additional IT-projecting middle cortical layer neuron sub-
type (L4-5IT LRRK1) similarly exhibited coordinated increases in CpG gene body methy-
lation and decreases in gene expression that were enriched for pathways related to neu-
ron differentiation, synapse organization, and synaptic signaling (Figure A.5.11 and Fig-
ure A.5.12). On the other hand, for the remaining excitatory neuron subtypes, changes in
CpG gene body methylation were not enriched for any biological processes. Moreover, in
the majority of these remaining excitatory neuron subtypes, differentially expressed genes
between older vs younger neurons were not enriched for the processes found previously
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(i.e., in L4-5IT TSHZ2, L4-5IT LRRK1, and L2-4IT neurons), with the one exception of
DEGs in L6IT LINC00343 being enriched for processes related to synaptic signaling and
neuron differentiation (Figure A.5.13). These results provide further evidence that age-
related epigenomic changes in neurons and their downstream functional consequences
are not uniform across neuron types but may instead be highly cell-type-specific.

Taken together, these results illustrate how MethylVI may facilitate new biological in-
sights at a finer level compared to previous standard scBS-seq analysis workflows. While
Chien and colleagues’ original analysis noted increased gene body methylation with age
in superficial (L2-4) and middle cortical layer (L4-5) IT projecting neurons for certain
genes, these epigenetic changes were not reported to be enriched for any biological pro-
cesses, which may reflect the limitations of previous scBS-seq analysis tools. Indeed, in
our experiments we found that the current standard ALLCools analysis workflow failed
to recover any enriched changes in gene body methylation with age at the cell type level.
Furthermore, while enriched changes in gene expression were noted in Chien et al. [31]
for neurons as a whole, cell-type-specific enrichments were not reported. On the other
hand, using MethylVI we immediately uncovered cell-type-specific functionally enriched
changes in gene body methylation, which prompted us to examine corresponding tran-
scriptomic changes with age at a more detailed resolution.

5.4 discussion

In this chapter we turned our attention towards single-cell methylation profiles obtained
via bisulfite sequencing (scBS-seq). In contrast to other, better studied single-cell modal-
ities, scBS-seq has received relatively little attention from the computational community.
Moreover, the idiosyncracies of bisulfite sequencing - as compared to, say, scRNA-seq -
prevent the naive application of previous models designed for other modalities to scBS-
seq. Thus, new, thoughtfully designed model structures are required to recover cell’s
underyling epigenetic state from raw scBS-seq counts.

To address this challenge, here we introduced MethylVI, a deep generative model
whose generative process is tailored to account for the distinct sources of variation in scBS-
seq. When applied to a number of core scBS-seq analysis tasks, we found that MethylVI
outperformed previously proposed workflows while readily scaling to handle modern
scBS-seq datasets consisting of data from tens to hundreds of thousands of cells. Be-
yond our base model, we also combined MethylVI’s structure with ideas from a previous
model designed for large-scale data integration and cell-type-annotation, but which was
originally tailored to scRNA-seq data. We found that our resulting MethylANVI model
achieved even stronger performance on these tasks compared to MethylVI alone.

More generally, by representing our beliefs through the rich language of probabilistic
graphical models, we may easily integrate MethylVI with ideas from other models de-
signed for further analysis tasks but which were not originally conceived for use with
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scBS-seq. For example, Ashuach et al. [6] previously proposed MultiVI, a generative
model for analyzing data from multimodal assays that simultaneously produce RNA and
ATAC measurements from each cell. By simply replacing the ATAC-specific portion of
MultiVI with corresponding BS-seq components from MethylVI, we may perform similar
analyses of simultaneous RNA and bisulfite profiles produced by assays like snmCT-seq
[112]. We envision such integrations as a promising direction for future work.

So far we have demonstrated how tailored model structures informed by specific exper-
imental designs (e.g. case-control perturbation experiments) and the properties of indi-
vidual single-cell modalities can facilitate different lines of inquiry. Our subsequent, final
main content chapter, examines this idea from yet another perspective. Namely, we con-
sider the problem of how to incorporate information on cells’ contexts (e.g. spatial position
or developmental time point) into models of cells’ underlying states.

5.a supplementary methods details

Producing denoised methylation estimates with MethylVI

For a given cell i, MethylVI can be used to produce denoised methylation profiles µG
i and

µH
i , where µG

ij (µH
ij) represents an estimate of the proportion of methylated cytosines in

CpG (CpH) contexts in region j. To do so, MethylVI first infers cell i’s latent representa-
tion zi conditioned on the CpG count vectors (yG

i , nG
i ) and CpH count vectors (yH

i , nH
i ).

This latent representation is then decoded to obtain the parameters of a beta-binomial like-
lihood for each region, from which we obtain estimated CpG and CpH mean parameter
vectors (µG

i , and µH
i , respectively).

Differentially methylated gene testing with MethylVI

Similar to previous variational-autoencoder-based probabilistic models of single-cell data
[7, 54, 107], MethylVI’s underlying model admits a method for differentially methylated
gene testing between groups of cells that controls for technical sources of noise. For a
given CpG context region feature j and pair of cells (a,b) with latent representations
(za, zb) and batch ids (sa, sb), we construct the following two mutually exclusive hy-
potheses:

H
j
1 := E

s
fθG(za, s) > E

s
fθG(zb, s),

versus

H
j
2 := E

s
fθG(za, s) ⩽ E

s
fθG(zb, s),
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where the expectation E is assessed using empirical frequencies. Evaluating which of
these two hypotheses is more likely is equivalent to computing a Bayes factor

K = log
p(Hj

1 | ya,na,yb,nb)

p(Hj
2 | ya,na,yb,nb)

.

The sign of this factor indicates which hypothesis is more likely, and its magnitude indi-
cates a significance level. The posterior distributions of these models can be approximated
via the variational distribution

p(Hj
1 |ya,na,yb,nb) ≈∑

s

∫
za,zb

p(fθG(za, s) ⩽ fθG(zb, s))p(s)dq(za | ya,na)dq(zb | yb,nb),

where p(s) denotes the relative abundance of cells in each batch s, and dq(·) indicates
that we are integrating over the distribution q. As all of our measures here are low-
dimensional, we can approximate the above integral via Monte-Carlo sampling.

Furthermore, we assume that cells are sampled independently. Thus, we can leverage
repeated applications of this procedure to test for differences in methylation across two
subpopulations of cells. In particular, we can average the Bayes factors across a large
number of randomly sampled pairs, where one cell in each pair is from each of the two
subpopulations. The average Bayes factor in this case then indicates whether one popula-
tion exhibits increased methylation in a given region. Similar hypotheses for CpH features
can be defined analogously by substituting θG for θH in the expressions above.

5.b supplementary experimental details

Gene set enrichment analysis

All functional gene ontology enrichment analyses described in this manuscript were per-
formed using the gseGO function in the clusterProfiler [181] R package with default param-
eters. In particular, gene ontology terms with number of genes between 10 and 500 were
considered for enrichment. The Benjamini-Hochberg procedure was used to control the
false discovery rate, with a BH-corrected p-value of 0.05 used as a cutoff for significance.

Baseline methods

To highlight our models’ capabilities, we compared their performance on individual tasks
(e.g. differentially methylated gene testing) with previously proposed methods for that
task.
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Differentially methylated gene testing

To our knowledge, the only previously proposed differentially methylated gene (DMG)
test specifically designed for single-cell BS-seq data is the scMET procedure of Kapourani
et al. [79]. Following the procedure proposed by Kapourani et al., when benchmarking
scMET’s performance we used the log-odds ratio (LOR)

LOR(µA
j ,µB

j ) = log(µA
j ) − log(µB

j )

for scMET’s significance levels, where µA
j and µB

j refer to scMET’s estimated mean methy-
lation parameter associated with region j for cells in two groups A and B. In our exper-
iments we used version 1.4.0 of the scMET developers’ R package, which was the latest
available version on Bioconductor [55] when performing our study.

We also benchmarked our results against the beta-binomial-based Wald test of Feng,
Conneely, and Wu [49] implemented in the authors’ DSS R package. For this method we
used the returned log-corrected p-values as DSS’ significance levels. For our experiments
used the latest version of this package available on Bioconductor (version 2.5.0).

Finally, we used Wilcoxon’s rank-sum test as an additional baseline method. While this
method was not designed specifically for BS-seq data, we included it as it is the default
test for differentially methylated gene detection in the ALLCools [102] scBS-seq analy-
sis package. Specifically, we applied the scanpy [178] implementation of Wilcoxon’s test
used in ALLCools to the estimated mean methylation parameters returned by ALLCools’
default workflow (i.e., the add_mc_frac function in ALLCools).

Dataset integration

To our knowledge, no methods have been previously proposed for the specific task of
scBS-seq dataset integration. Thus, to benchmark MethylVI and MethylANVI’s integra-
tion performance, we compared our model’s performance to four state-of-the-art scRNA-
seq data integration methods (fastMNN [65], Harmony[89], Scanorama [68], and Seu-
rat [150]). Each of these baseline methods was originally designed to handle unimodal
scRNA-seq data and accepts the results of principal component analysis as input. To han-
dle multimodal (i.e., CpG and CpH) BS-seq measurements we extended these methods as
follows.

First, for each dataset we computed normalized methylation features using the stan-
dard ALLCools workflow. Next, we scaled each feature and then performed principal
component analysis separately for CpG and CpH features. Following Liu et al. [102],
the principal components of each modality were scaled to have the same total variance.
These scaled principal components were then concatenated together and used as inputs
to baseline methods. For fastMNN, Harmony, and Scanoarama we used their Python im-
plementations available in scanpy [178]. For Seurat, we used the Python implementation
available in ALLCools.
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evaluation metrics

Differentially methylated gene testing

To evaluate the quality of MethylVI and benchmark methods’ differentially methylated
gene (DMG) test results, we compared each baseline method’s agreement on single-cell
level data from [111] versus results obtained using a bulk DMG testing workflow on
MethylC-seq data collected by Mo et al. [120] Specifically, for our bulk DMG test we
applied the hierarchical-linear-model-based test of the limma [138] R package, which is
a standard choice for differential methylation analyses in microarray and bulk bisulfite
sequencing data [179] and is the default test in the popular RnBeads [8, 122] methylation
analysis package. Following standard practice, for each region i in a cell j we transformed
our observed counts into M-values via

Mij = log2

yij +α

nij − yij +α

with α = 1 for use with limma [42]. M-values were then regressed against cell-type co-
variate using limma’s lmFit function and p-values were obtained via the empirical-Bayes-
moderated t-test procedure implemented in limma’s eBayes function. Log-transformed
Benjamini-Hochberg-corrected [13] p-values were then taken as the limma effect size. To
quantify agreement between our bulk DMG and each single-cell DMG baseline’s results,
we then used Pearson’s R.

Dataset Integration

All individual data integration metrics below and their descriptions were adapted from
Luecken et al. [110]. Metric values were computed using the scIB Python library1, and
individual metric scores were scaled between 0-1. After scaling, batch correction metrics
were averaged to compute a batch correction score for each method, and bio-conservation
metrics were similarly averaged to compute bio-conservation scores. Following Luecken
et al. [110], overall scores for each method were computed by taking a 40:60 mean of batch
correction and bio-conservation scores.

Cell type normalized mutual information (NMI)

The normalized mutual information (NMI) measures the overlap in two sets of clustering
labels. Here NMI was used to compare author-provided cell type labels with Louvain
clustering [17] computed on the integrated dataset. When computing NMI, cluster over-
lap is scaled using the mean of the entropy terms for the two sets of clustering labels.

1 https://github.com/theislab/scib

https://github.com/theislab/scib
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Thus, NMI scores of 0 or 1 correspond to uncorrelated clustering versus a perfect match,
respectively. Optimized Louvain clustering for this metric was performed to obtain the
best match between clusters and labels. Specifically, Louvain clustering was performed at
a resolution range of 0.1 to 2 in steps of 0.1, and the clustering output with the highest
NMI with the label set was used.

Cell type adjusted rand index (ARI)

The Rand index compares the overlap of two clusterings; it considers both correct cluster-
ing overlaps while also counting correct disagreements between two clusterings. Similar
to NMI, we compared the cell-type labels with the NMI-optimized Louvain clustering
computed on the integrated dataset. The adjustment of the Rand index corrects for ran-
domly correct labels. An adjusted Rand index (ARI) of 0 or 1 corresponds to random
labeling or a perfect match, respectively.

Cell type adjusted silhouette width (ASW)

The silhouette width measures the relationship between the within-cluster distances of a
cell and the between-cluster distances of that cell to the closest cluster. Averaging over
all silhouette widths of a set of cells yields the average silhouette width (ASW), which
ranges between -1 and 1. The ASW is commonly used to determine the separation of clus-
ters where 1 represents dense and well-separated clusters, while 0 or -1 corresponds to
overlapping clusters (caused by equal between- and within-cluster variability) or strong
misclassification (caused by stronger within-cluster than between-cluster variability), re-
spectively.

When using ASW to measure the clustering of cell types, the ASW was computed
using cell identity labels and a given integrated data representation, and the score was
then scaled to a value between 0 and 1 using the following equation

cell type ASW = (ASW + 1)/2.

Isolated label F1

Isolated labels were defined as cell type labels that were present in the least number of
batches. If multiple isolated labels were present, the mean of each score was taken. To
determine how well those cell types are separated from other cell types in the integrated
data, we first determine the cluster with the largest number of an isolated label. Subse-
quently, an F1 score of the isolated label against all other labels within that cluster is
computed, where the F1 score is defined as follows

F1 = 2
precision · recall
precision + recall

.
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Isolated label average silhouette width (ASW)

Here we computed the ASW as defined previously, but only for isolated label subset of
the latent representation. Scaling and averaging of the score are the same as described pre-
viously for the ASW. If multiple isolated labels were present, their corresponding scores
were averaged as done for the isolated label F1 score.

Graph cell type local inverse Simpson’s index (cLISI)

The local inverse Simpson’s index (LISI) is a measure of diversity that has previously been
applied to measure cell type separation and batch integration [89]. Specifically the LISI
correponds to the number of cells that can be drawn from a neighbor list before drawing
two cells from the same batch. As such, LISI scores range from 1 to B, where B is the
number of batches in a dataset.

LISI scores were calculated using the graph LISI implementation of Luecken et al. [110],
which computes LISI values using a nearest neighbor graph as input. LISI scores were
then rescaled to lie between 0 and 1. In particular, for a given method the median LISI
score was computed across neighborhoods. To quantify cell type separation, the following
transformation was applied to the median LISI score:

f(x) =
B− x

B− 1
.

The resulting cell type LISI score (cLISI) lies between 0 and 1 where 0 indicates poor
cell type separation and 1 indicates strong separation.

kBET

The kBET algorithm [25] tests whether the label composition of the k nearest neighbor-
hood of a given cell is similar to the expected global label composition. The test is repeated
for a random sample of cells, and the results are summarized as a rejection rate over all
tested neighborhoods.

Here we applied the kBET algorithm as outlined in Luecken et al. [110] That is, k near-
est neighbor graphs were computed for integrated embeddings with k = 50. To test for
technical effects and to account for cell-type frequency shifts across datasets, we applied
kBET separately on the batch variable for each cell identity label. Using the kBET defaults,
a k equal to the median of the number of cells per batch within each label was used for
this computation. Additionally, we set the minimum and maximum thresholds of k to 10

and 100, respectively. As kNN graphs that have been subset by cell identity labels may
no longer be connected, we computed kBET per connected component. If > 25% of cells
were assigned to connected components too small for kBET computation (smaller than
k× 3), we assigned a kBET score of 1 to denote poor batch removal. Subsequently, kBET
scores for each label were averaged and subtracted from 1 to give a final kBET score.
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Graph integration local inverse Simpson’s index (iLISI)

Initial LISI scores were computed as described previously for the Graph cLISI metric.
After computing the median LISI score across neighborhoods for a given method, the
following transformation was then applied to the median LISI score:

g(x) =
x− 1

B− 1
.

The resulting integration LISI (iLISI) lies between 0 and 1, where 0 corresponds to poor
integration and 1 corresponds to strong mixing across batches.

Batch average silhouette width (ASW)

Here the ASW was used to measure mixing across batches after running a given integra-
tion procedure. As higher mixing as opposed to separation across batches is desirable, we
rescaled the ASW accordingly to lie between 0 and 1 such that 1 indicates strong mixing
while 0 indicates undesirable separation. In particular, we applied the following rescaling
formula

batch ASW = 1− abs(ASW).

Graph connectivity

The graph connectivity metric quantifies whether the kNN graph representation, G, of the
integrated data directly connects all cells with the same cell identity label. For each cell
identity label c, we created the subset kNN graph G(Nc,Ec) to contain only cells from a
given label. Using these subset kNN graphs, we computed the graph connectivity (GC)
score using the equation:

GC =
1

|C|

∑
c∈C

|LCC(G(Nc,Ec))|

Nc
,

where C denotes the set of cell identity labels, |LCC()| is the number of nodes in the largest
connected component of the graph, and |Nc| is the number of nodes with cell identity c.
The GC score has a range of 0 to 1, where 1 indicates that all cells with the same cell type
label are connected in the integrated kNN graph and 0 indicates that no cells with the
same identity are connected.

Principal component regression (PCR) batch

Following Büttner et al. [25] here the R2 was calculated from a linear regression of the
covariate of interest (i.e., batch label B) onto each principal component of an integrated



5.B supplementary experimental details 97

data representation. Subsequently, the variance contribution of the batch effect per prin-
cipal component was then calculated as the product of the variance explained by the ith
principal component (PC) and the corresponding R2(PCi|B). The sum across all variance
contributions by the batch effects in all principal components gives the total variance
explained by the batch variable as follows:

Var(C | B) =

G∑
i=1

Var(C | PCi)× R2(PCi | B),

where Var(C | PCi) is the variance of the data matrix C explained by the ith principal
component.

Datasets and preprocessing

Here we describe the datasets used in this work along with any corresponding preprocess-
ing steps. Cytosine-level measurements contained in ALLC format files were aggregated
into MCDS files containing CpG and CpH genomic region features using the ALLCools
[102] Python package. MCDS files were then preprocessed as done in the official ALL-
Cools tutorial. In particular, features with greater than 20% overlap with problematic
regions of the genome as defined by the ENCODE blacklist [4], features lying in the Y
chromosome, and features lying in the mitochondrial genome were removed from further
consideration. For all datasets we filtered out any features with mean coverage less than
100 cytosines and retained the top 2,500 most highly variable CpG features along with
the top 2,500 most highly variable CpH features as determined by the calculate_hvf_svr

function in ALLCools. MCDS files were then converted into MuData [21] format contain-
ing separate AnnData [166] objects for CpG and CpH methylation.

Luo et al. 2017

This dataset (Gene Expression Omnibus accession number GSE97179) consisted of n =

3, 373 single-cell mouse brain frontal cortex methylomes collected using snmC-seq. For
this dataset the corresponding ALLC files were downloaded from the Gene Expression
Omnibus and converted into a single MCDS file with ALLCools using the mm10 reference
genome file provided by GENCODE at this link. Cell type annotations for this dataset
were obtained from the corresponding manuscript’s supplementary materials.

Mo et al. 2015

This dataset (Gene Expression Omnibus accession number GSE63137) consisted of bulk
methylome measurements profiled using using MethylC-seq [160] from purified popu-
lations of excitatory pyramidal neurons, VIP+ inhibitory neurons, and PV+ inhibitory

https://lhqing.github.io/ALLCools/cell_level/basic/mch_mcg_100k_basic.html
https://lhqing.github.io/ALLCools/cell_level/basic/mch_mcg_100k_basic.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97179
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M22/gencode.vM22.annotation.gtf.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63137
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neurons. For this dataset the corresponding ALLC files were downloaded from the Gene
Expression Omnibus and converted into a single MCDS file with ALLCools using the
mm10 reference genome file provided by GENCODE at this link.

Liu et al. 2021

This dataset (Gene Expression Omnibus accession number GSE132489) consisted of a
large-scale mouse brain single-cell methylome atlas with samples taken from adult (P56)
C57BL/6 mice with two replicates for each brain region. In our experiments we restricted
our attention to cells taken from the dentate gyrus (DG) region, as they were profiled
simultaneously using two BS-seq platforms: snmC-seq2 [114] and sn-m3C-seq [95]. MCDS
files for this data were downloaded directly from the NIH Gene Expression Omnibus.
Cell type annotations for this dataset were obtained from corresponding manuscript’s
supplementary materials.

Luo et al. 2022

This dataset (Gene Expression Omnibus accession GSE140493) consisted of single-cell
methylomic measurements from the human frontal cortex (n = 14, 942 cells) collected
from seven samples using a total of four different bisulfite sequencing platforms (snmC-
seq [111], snmC-seq2 [114], snmCAT-seq [113], and sn-m3C-seq [95]). MCDS files for
these datasets (contained in GSE140493_MCDS_data.tar.gz) were downloaded directly
from the GEO. Cell type annotations for this dataset were obtained from the correspond-
ing manuscript’s supplementary materials.

Chien et al. 2023

This dataset (Gene Expression Omnibus accession number GSE247988) consisted of single-
cell methylome measurements collected via snmCT-seq [112] from the frontal cortex (Broad-
man area 46) of eleven adult human donors. Donors included three aged males (70-71

years old), three aged females (71-74 years old), three young males (25 years old), and
two young females (23-30 years old). For this dataset the corresponding ALLC files were
downloaded from the Gene Expression Omnibus and converted to MCDS format with
ALLCools using the hg38 reference genome file provided by GENCODE at this link. Dif-
ferential expression results for the RNA-seq data were obtained from the corresponding
manuscript’s supplementary materials.

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M22/gencode.vM22.annotation.gtf.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132489
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140493
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE247988
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/gencode.v38.annotation.gtf.gz
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5.c supplementary figures

Figure A.5.1: UMAP plots of dentate gyrus methylome data from Liu et al. [102] after integration
across sequencing protocols with baseline data integration methods.
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Figure A.5.2: Benchmarking MethylVI’s ability to recover methylation levels in cells for features
with no coverage. a-b, Investigation of MethylVI and baseline methods’ ability to
recover missing values for CpG features (a) and CpH features (b) from Luo et al.
[111], where coverage levels were randomly corrupted (i.e., set to zero) for a range
of probabilities.
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Figure A.5.3: Log normalized mCH levels of Arpp21 for excitatory and inhibitory neurons from
Luo et al. [111] normalized using MethylVI (left) and ALLCools (right).
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Figure A.5.4: Validation of MethylVI’s findings on Arpp21 and Adgra3 methylation using an
snmC-seq2 dataset. a-b, CpH methylation levels of Arpp21 and Adgra3 for neurons
collected from the mouse primary motor cortex using snmC-seq2 [102]. Plots depict
log-transformed mCH levels for the same subsets of neurons as in Fig. 3a-b in the
main text. To avoid introducing potential biases due to choice of normalization, esti-
mated mCH levels are displayed using both ALLCools (top) and MethylVI (bottom)
for normalization.
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Figure A.5.5: CpG differentially methylated gene test results for MethylVI and baseline meth-
ods. a-d, MethylVI and baseline differentially methylated gene testing results when
applied to CpG gene body methyylation features for excitatory versus inhibitory
neurons from Luo et al.[111] based on consistency vs results from bulk data.

Figure A.5.6: Enrichment for putative marker genes in MethylVI’s differential methylation test
results. Histogram showing enrichment distribution under the null model of puta-
tive pan-excitatatory and pan-inhibitory marker genes from Luo et al. [111]. Null
model calculated by randomly labeling features as differentially methylated and
counting how many overlap with putative markers from Luo et al. [111]. Here the
number of features randomly labeled as differentially methylated was chosen to be
equal to the number of features called as differentially methylated by MethylVI with
an absolute Bayes factor cutoff >= 3. To obtain a null distribution this process was
repeated 1,000 times. Yellow dashed line indicates enrichment of DMGs obtained via
MethylVI.
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Figure A.5.7: Qualitative atlas integration results for de novo integration baselines on the frontal
cortex data from Luo et al. [113].
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Figure A.5.8: Assessing the robustness of our MethylANVI plus scArches reference atlas map-
ping workflow to cell types not present in the reference data. a-b, For these ex-
periments L4-5 FOXP2 neurons (a) or L6 TLE4 neurons (b) were held out from the
reference data while remaining in the query dataset. Black circles indicate cell types
held out from the reference.
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Figure A.5.9: Magnitudes of changes in average gene body mCG and mCH between L4-5IT TSHZ2
neurons from older and younger donors as estimated by MethylVI.
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Figure A.5.10: Heatmap displays ALLCools estimated CpG gene body methylation levels for genes
displayed in main text Fig. 5f. Values were log transformed and scaled to lie be-
tween 0 and 1 for visualization.

Figure A.5.11: Gene ontology enrichment results for L4-5IT LRRK1 neurons based on MethylVI’s
CpG differentially methylated gene (DMG) test results (left) and differentially ex-
pressed gene (DEG) test results provided by Chien et al. [31] (right).
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Figure A.5.12: Gene ontology enrichment results for L2-4IT neurons based on MethylVI’s CpG
differentially methylated gene (DMG) test results (left) and differentially expressed
gene (DEG) test results provided by Chien et al. [31] (right).

Figure A.5.13: Gene ontology enrichment results for L6IT LINC00343 neurons based on differen-
tially expressed gene (DEG) test results provided by Chien et al. [31].



6
S C A L A B L E D E P E N D E N C Y- AWA R E M O D E L I N G

The standard VAE model assumes that our data are independently and identically dis-
tributed. To account for different experimental factors when analyzing single-cell data,
in the previous chapters we posited generative processes that maintained the assump-
tion of independence, but not of identical distribution (e.g. to account for individual cells’
observed library sizes). While convenient, the independence assumption is at odds with
known biology; cells do not act in isolation but rather in coordination with their sur-
rounding environment to enable tissue function. Ideally, we would explicitly account for
spatial dependencies between cells during the modeling process. However, for standard
single-cell sequencing protocols, cells are disassociated from their tissue context (i.e., we
lose any spatial information), and the best we can do is assume independence between
measurements.

In response to this issue, a number of spatially resolved assays have been developed.
These protocols enable the collection of molecular omics measurements while preserving
cells’ spatial context, thereby enabling the incorporation of spatial information into the
modeling process. How might we incorporate this information? One principled way to
do so would be to impose additional structure on the latent variables z representing
underlying biological state in a VAE model via a Gaussian process (GP) prior. Through
the use of an appropriate covariance function that reflects cells’ spatial positions, the GP
prior may encourage cells’ latent representations to account for spatial positioning in
addition to just molecular readouts.

Unfortunately, breaking the independence assumption with the GP prior adds signifi-
cant computational overhead. Without independence, we may no longer naively use mini-
batch gradient ascent to optimize the VAE’s parameters. Moreover, GP-based models suf-
fer from well-known scalability issues due to the presence of O(n3) matrix inversion
operations. Thus, to capitalize on the potential benefits from the GP prior, we must turn
to sparse approximation techniques that allow us to approximate the structure in the GP
prior without incurring unacceptable computational cost.

The remainder of this chapter proceeds as follows. In Section 6.1 we provide neces-
sary background on a previously proposed GP prior VAE from Pearce [131]. Section 6.2
provides further background on inducing point methods for sparsely approximating GP
models, which we extend in Section 6.3 to derive a sparse approximate GPVAE model
using amortized inference. We demonstrate the benefits of our model empirically in Sec-
tion 6.4 and conclude with a brief discussion in Section 6.5.

107
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Figure 6.1: Graphical depiction of the Gaussian process prior VAE generative process. Shaded
nodes denote observed quantities, while unshaded nodes denote hidden variables.
Square nodes depict constant values, while circles correspond to random variables.
The mutual dependency between the variables {zi} is depicted via a loop around the
plate.

6.1 the gaussian process prior vae

To account for dependencies between data points’ latent representations, Pearce [131]
proposes the Gaussian Process Prior VAE based on the following generative process:

z1:N ∼ GP(z1:n | 0,K) (18)

yi ∼ Likelihood(yi | zi). (19)

Here GP(z1:n | 0,K) denotes a Gaussian process with zero mean and covariance matrix K

whose entries Kij are specified as the outputs of a covariance function k(xi, xj). “Likeli-
hood” can be any closed-form probability distribution with parameters dependent on zi.
We depict this process graphically in Figure 6.1.

As with our previous generative processes, exact posterior inference with the above
process is intractable. Thus, we instead perform approximate inference via variational
Bayes. In particular, to perform inference while accounting for the GP structure in our
model, Pearce [131] proposes the following variational posterior:

qϕ(z1:n | y1:n) =
1

Z

n∏
i=1

q̃ϕ(zi | yi)p(z1:n) (20)

where q̃ϕ is a recognition (encoder) network and Z is a normalizing constant that ensures
our density integrates to 1. Intuitively, this posterior is designed to leverage both informa-
tion from the observed data (via q̃ϕ) and the structure from the GP prior. Plugging in our
posterior into the ELBO, we obtain

logp(y1:N) ⩾ Eqϕ(z1:n|y1:n)

[
log

p(y1:n, z1:n)
qϕ(z1:n | y1:n)

]
(21)

= Eqϕ(z1:n|y1:n)

[
log

∏
i p(yi | zi)p(z1:n)∏

i q̃ϕ(zi | yi)p(z1:n)/Z

]
(22)

=

n∑
i=1

Eqϕ(zi|y1:n)

[
logp(yi | zi) − q̃ϕ(zi | yi)

]
+ logZ. (23)
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By exploiting the properties of Gaussian distributions, we may directly compute some of
the terms above in closed form. First, we define µ̃ ∈ Rn as a vector containing the mean
parameters output by our inference network based on the observed data; σ̃2 is defined
analogously for the variance parameters. First, we may compute the normalizing constant
Z in closed-form (Section 6.A.1) to obtain

logZ = logN(µ̃ | 0,Σ), (24)

where

Σ = K+ diag(σ̃2). (25)

That is, our normalizing constant is equivalent to a Gaussian process marginal likelihood
over µ̃ with observation noise specified by σ̃2. It may also be shown (Section 6.A.2) that
our variational posterior at individual locations can be expressed as

qϕ(zi | y1:n) = N(kT
xi
Σ−1µ̃,k(xi, xi) − kT

xi
Σ−1kxi

), (26)

with

kT
xi

= [k(x1, xn), . . . k(x1, xn)] . (27)

We recognize Equation (26) as the posterior distribution of a Gaussian process over latent
function values z1:n and observed data µ̃; this fact will be useful later. To emphasize this
fact, we write

qϕ(zi | y1:n) = qϕ(zi | µ̃) (28)

With our new closed-form expression for the variational posterior, we recognize the
Eqϕ(zi|y1:n)

[
−q̃ϕ(zi | yi)

]
= Eqϕ(zi|µ̃)

[
−q̃ϕ(zi | yi)

]
terms as cross-entropies between

Gaussian distributions, which may be computed analytically. While the expected likeli-
hood terms from Equation (23) cannot be rewritten in closed form, we may approximate
them via Monte Carlo sampling with the reparameterization trick. Taken together, these
results allow us to rewrite the ELBO as

L =

n∑
i=1

Eqϕ(zi|µ̃)

[
logp(yi | zi) − q̃ϕ(zi | yi)

]
+ logN(µ̃ | 0,Σ). (29)

Armed with this expression, we could in theory proceed to optimize Equation (23) via
stochastic gradient descent. However, doing so is only feasible for small n, as the matrix
inversions required to compute the marginal GP likelihood and the parameters of our
variational posterior scale cubically in n. Thus, rather than optimizing our ELBO directly,
we must instead turn to approximation techniques.
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6.2 inducing point methods and the sparse gaussian process vae

To alleviate the potentially intractable computations required to compute the ELBO in
Equation (23), we will exploit the well-studied idea of inducing points from the GP liter-
ature. In brief, inducing point methods posit the existence of a set of inducing variables
u1:m placed at locations x1:m that “summarize” the full dataset; this notion will become
precise momentarily.

Consider for now the generic GP regression setting with data y1:n corresponding to
noisy observations of underlying latent function values f1:n generated from a GP prior.
In other words, we assume our data follows the following generative process

f1:n ∼ N(0,K) (30)

y1:n ∼ N(f1:n,σ2I) (31)

To compute predictions for a set of test points f∗, we compute the posterior predictive
distribution

p(f∗ | y1:n) =

∫
p(f∗ | f1:n)p(f1:n | y1:n)df1:n. (32)

As all of the densities in the above integral are Gaussian, we may compute the above in-
tegral exactly. However, doing so has O(n3) complexity and becomes infeasible for larger
datasets. Inducing point methods attempt to resolve this issue by positing the existence
of a set of function values u1:m ∈ Rm that “summarize” the information contained in the
observed dataset y. To make predictions at test points, rather than computing the exact
posterior we instead compute a surrogate distribution

qS(f∗) =

∫
p(f∗ | u1:m)qS(u1:m)du1:m (33)

When qS is Gaussian, the above expression can be computed analytically with complexity
O(nm2), which results in substantial savings if m << n.

We must now specify a method for choosing the parameters of qS(u1:m). A principled
way to do so would be to take a variational approach and minimize the KL divergence
between our distributions qS(f1:n) and p(f1:n | y1:n) at the training points. That is, we
minimize

DKL(qS(f1:n) || p(f1:n | y1:n)) (34)

via the ELBO. To avoid reintroducing problematic matrix inversions, we may equivalently
minimize

DKL(qS(f1:n,u1:m) || p(f1:n,u1:m | y1:n)), (35)
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where we define qS(f1:n,u1:m) = p(f∗ | u1:m)qS(u1:m) and we assume that f1:n and u1:m

are jointly distributed according to our GP prior. In their celebrated work, Titsias [155]
demonstrated that the parameters maximizing the corresponding ELBO can be found
analytically with the following expressions:

µS = diag(σ−2)KmmΣ−1Kmny1:n (36)

AS = KmmΣ−1Kmm. (37)

To find the inducing point locations, we can maximize the ELBO with respect to x1:m after
plugging in the above expressions, resulting in the bound

logp(y1:n) ⩾ logN(µ̃ |KnmK−1
mmKmn + diag(σ̃2)) (38)

−
1

2
Tr
(
diag(σ̃−2)(K−KnmK−1

mmKmn)
)

, (39)

which can be computed without any costly O(n3) operations.

The above result can similarly be leveraged to achieve a sparse approximation to our the
GP VAE ELBO. In the previous section we demonstrated that the GP VAE’s inference net-
work outputs µ̃ as noisy observations from an underlying latent function z1:n distributed
according to a Gaussian process prior. That is, we have

z1:n ∼ N(0,K) (40)

µ̃ ∼ N(z1:n, diag(σ̃2)), (41)

which yields a corresponding marginal likelihood

p(µ̃) = N(µ̃ | 0,Σ). (42)

Letting µ̃ and z1:n take the place of y1:n and f1:n in the variational GP framework, we
may use Equation (39) to simultaneously learn a surrogate distribution for qϕ(zi | µ̃) and
a lower bound on logp(µ̃) = logN(µ̃ | 0,Σ). By doing so, we may sparsely approximate
the full GP VAE ELBO without costly O(n3) matrix inversions.

Despite this improvement, simply plugging in the results from Titsias [155] into the
GP-VAE ELBO stil results in an objective that suffers from scalability issues. In particu-
lar, our optimal surrogate distribution parameters depend on the full GP dataset and its
corresponding covariance matrix. This issue results in a bound that has O(n2) computa-
tional complexity and which is not amenable to minibatching. Fortunately, as shown in
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Figure 6.1: Graphical model depiction of the SGPVAE model from Jazbec et al. [74] Shaded
nodes denote observed quantities, while unshaded nodes denote hidden variables.
Square nodes depict constant values, while circles correspond to random variables.
Here the mutual dependency from the original GPVAE model (Figure 6.1) is sparsely
approximated via a global set of inducing variables u.

Jazbec et al. [74], with a minibatch of size b we may compute stochastic estimates for these
quantities via

Σb = Kmm +
n

b
Kmbdiag(σ̃2)Kbm (43)

µb =
n

b
KmmΣ−1

b Kmbdiag(σ̃2)µ̃b (44)

Ab = Kmm(Σb)
−1Kmm (45)

which can be used to compute a corresponding evidence lower bound. All of these esti-
mators are consistent, though only Σb is unbiased; in practice Jazbec et al. [74] note that
the bias of the other two estimators tends to be small. This results in an approximate GP-
VAE ELBO that can be computed in O(bm2 +m3) time, which corresponds to significant
savings assuming m << n. We depict this approximate model graphically in

6.3 the fully amortized sparse gaussian process vae

Equipped with the tools described previously from Titsias [155] and Jazbec et al. [74], we
can, in theory, train GP-VAE models even with large n. However, two challenges remain
that may prevent the above framework from being adopted in practice. First, despite
the significant computational savings achieved via the use of inducing points, we have
not fully resolved our scalability issues, but rather postponed them. That is, in order to
maintain a high-quality approximation to the true GP posterior, our number of inducing
points m must grow with respect to the dataset size n. As n grows sufficiently large, our
corresponding m may increase to the point where performing O(m3) operations becomes
problematic. Second, Jazbec et al. [74] observed that training procedure suffered from
notable instability, which we suspect may be due to difficulties with optimizing a single
global set of inducing points.

To alleviate these issues, here we propose the Fully Amortized Sparse Gaussian Process
VAE (FA-SGPVAE). Intuitively, our method is built on the following idea: rather than us-
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Figure 6.1: Graphical model depiction of our proposed FA-SGPVAE model. Shaded nodes de-
note observed quantities, while unshaded nodes denote hidden variables. Square nodes
depict constant values, while circles correspond to random variables. Dotted lines cor-
respond to inference via neural network models. Here the global inducing points from
(Figure 6.1) are replaced with a (potentially smaller) set of local inducing points in-
ferred for each input location.

ing a single global set of m inducing points to approximate the Gaussian process posterior
at all input locations {xi}, for each individual input location xi we instead use a smaller
set of h local points that approximate the GP posterior well around xi. We depict our
model graphically in Figure 6.1. By amortizing the computation of these inducing point
locations as the output of a neural network, we may associate different inducing point
locations with each xi without storing all inducing points in memory. In addition, we
find that optimizing our inducing point locations as the output of a neural network leads
to substantially faster convergence. We formalize this idea below.

We begin by revisiting inducing point approximations in the generic GP regression setting
with data y1:n corresponding to noisy observations of underlying latent function values
f1:n generated from a GP prior. However, rather than assuming that our inducing points u
are sampled from a single prior distribution p(u), we instead assume that our distribution
over u1:h depends on some auxiliary variable x̃. That is, we assume our inducing points
follow the hierarchical prior:

x̃ ∼ p(x̃) (46)

u1:h | x̃ ∼ N(0,Kh(x̃)). (47)

Here Kh(x̃) corresponds to the covariance matrix of our inducing points, where we abuse
notation with h(x̃) to emphasize that the locations of our h inducing points are dependent
on x̃. In practice, we realize this idea as a neural network that takes x̃ as input and infers
inducing point locations. For now we take p(x̃) to be some implicit distribution that we
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may sample from, but whose analytical form may be unknown. For a fixed x̃ we then
have

p(f1:n,u1:h | x̃) = N

(
0,

[
K Kn,h(x̃)

Kh(x̃),n Kh(x̃)

])
, (48)

where Kn,h(x̃) and Kh(x̃),n denote the cross covariances between our inducing points and
our latent function values. We note that the inclusion of x̃ does not change our original
prior on f: for any fixed x̃ we may marginalize out u1:h from Equation (48) to obtain

p(f1:n | x̃) = N(0,K). (49)

As this holds for all x̃, we conclude that our marginal distribution over f is our original
Gaussian process prior distribution. Following Tran et al. [156] we may derive a lower
bound on our log GP marginal likelihood using an approximate posterior of the form

q(f1:n,u1:h, x̃) = p(f1:n | u1:h)q(u1:h | x̃)p(x̃). (50)

Plugging this into the ELBO we then have

logp(y1:n) ⩾ Eq

[
p(y1:n, f1:n,u1:h, x̃)

q(f1:n,u1:h, x̃)

]
(51)

= Eq

[
logp(y1:n | f1:n)p(f1:n | u1:h)p(u1:h | x̃)p(x̃)

p(f1:n | u1:h)q(u1:h | x̃)p(x̃)

]
(52)

= Eq

[
logp(y1:n | f1:n)p(u1:h | x̃)

q(u1:h | x̃)

]
(53)

= Ep(x̃) Ep(f1:n|u1:h)q(u1:h|x̃)

[
logp(y1:n | f1:n)p(u1:h | x̃)

q(u1:h | x̃)

]
︸ ︷︷ ︸

(∗)

(54)

Assuming we can take samples from our implicit distribution p(x̃), we can then approx-
imate the above objective via Monte Carlo sampling. Notably, for any fixed sample x̃

and corresponding inducing points h(x̃), we can analytically compute the q(u | x̃) that
maximizes (∗) as a Gaussian distribution with mean and covariance parameters

µx̃ = diag(σ−2)Kh(x̃)Σ
−1Kh(x̃),ny1:n (55)

Ax̃ = Kh(x̃)Σ
−1Kh(x̃). (56)
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All that remains to optimize the locations of our inducing variables h(x̃). To do so, we use
the standard assumption that each yi is independent from the others conditioned on fi
to rewrite the inner expectation in Equation (54) as

Ep(f1:n|u1:h)q(u|x̃)

[
logp(y1:n | f1:n)p(u1:h | x̃)

q(u1:h | x̃)

]
(57)

= Ep(f1:n|u1:h)q(u1:h|x̃)

[
log

∏
i p(yi | fi)p(u | x̃)

q(u1:h | x̃)

]
(58)

= Ep(f1:n|u1:h)q(u1:h|x̃)

[
n∑

i=1

logp(yi | fi)

]
−DKL (q(u1:h | x̃) || p(u | x̃)) (59)

=

n∑
i=1

Ep(fi|u1:h)q(u1:h|x̃) [logp(yi | fi)] −DKL (q(u | x̃) || p(u1:h | x̃)) (60)

= n
(
Ei∼U[n] Ep(f1:n|u1:h)q(u1:h|x̃)

[
logp(yi | fi)

])
−DKL (q(u1:h | x̃) || p(u1:h | x̃)) . (61)

Substituting this expression for (∗) into Equation (54) we obtain

L = Ep(x̃)

[
n
(
Ei∼U[n] Ep(f1:n|u1:h)q(u1:h|x̃)

[
logp(yi | fi)

])
−DKL (q(u1:h | x̃) || p(u1:h | x̃))

]
,

(62)

which we may use to optimize our inducing point locations via stochastic gradient descent.
Our derivations leading to Equation (62) hold for any implicit distribution p(x̃) over an
arbitrary space of auxiliary variables. To instantiate this idea concretely, we let samples
from p(x̃) correspond to samples from our collection of input data points {xi}. Replacing
Ep(x̃) with the empirical expectation over {xj}, we then have

L =

n∑
j=1

Ei∼U[n] Ep(f1:n|u1:h)q(u1:h|xj)[logp(yi | fi)]

−
1

n
DKL

(
q(u1:h | xj) || p(u1:h | xj)

)
.

(63)

In theory, we could choose to proceed by optimizing the above objective as-is. Recall
though that our specific goal is to learn to map individual input points xi to appropriate
“local” inducing points for the corresponding output yi. Yet, by independently iterating
over our dataset both in the outer sum (i.e., via j) and the inner expectation (i.e., via i),
our objective will instead force our map to produce inducing points that explain the full
output dataset {yi} for a given input xj. To alleviate this issue, rather than taking the full
empirical expectation over our indices i ∼ U[n] above, we instead choose to approximate
this using a single sample fixed to be same index as in the outer sum. That is, we optimize

L ≈
n∑

i=1

Ep(f1:n|u1:h)q(u1:h|xi)[logp(yi | fi)] −
1

n
DKL (q(u1:h | xi) || p(u1:h | xi)) . (64)
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By doing so, our objective is biased to encourage our mapping to produce local inducing
points. We note that, despite this bias, the expressions for the optimal parameters of our
local variational distributions q(u1:h | x̃) from Equation (55) and Equation (56) ensure that
the output locations of our inducing points continue to respect information encoded in GP
prior over the full dataset. Crucially, in practice our approximation results in a method
that associates each input location xi with a distinct set of optimal inducing points, as
desired.

Analagous to the initial sparse GP-VAE described in Section 6.2, we may similarly substi-
tute µ̃ and z1:n for y1:n and f1:n in the above framework to obtain an ELBO that relies on
local inducing points to approximate the Gaussian process posterior at individual input
locations. By doing so, we can produce accurate posterior approximations at individual
inputs with a small number of local inducing points h per input location.

For a given minibatch, our approximate posteriors may be computed with O(bh3) com-
plexity, resulting from computation of the optimal parameters for each q(u1:h | x̃) from
Equation (55) and Equation (56). Notably, for an individual input location, the number
of local points h required to achieve an accurate approximation may be substantially
lower than the number of global inducing points m required to achieve an accurate GP
approximation. Thus, the cost per minibatch when training our model may represent a
substantial saving compared to the O(bm2 +m3) complexity of previous sparse GPVAEs
[74] for sufficiently small h and large m. Additionally, in practice we found that amortiz-
ing the computation of our local inducing points as the output of a neural network led to
increased stability during training compared to previous work.

6.4 results

We applied our model to the synthetic moving ball dataset proposed in Pearce [131]
for evaluating Gaussian process prior latent variable models. This dataset consists of 30-
frame-long black and white videos of a moving circle (Figure 6.2). While the observed
video frames are high-dimensional, each frame is generated from a two-dimensional la-
tent vector corresponding to the position of the circle’s center at a given time point. To
ensure smoothness in the ball’s movements, the trajectories in a given video are sampled
from a Gaussian process with a radial basis function kernel. Our goal with this dataset is
to infer the correct underlying two-dimensional trajectories from our videos.

We began by assessing our proposed FA-SGPVAE’s performance using h = 15 local
inducing points per frame. As each video is relatively short, exact GP inference in the
latent space feasible; thus, for comparison we also trained GPVAE’s using the original
(non-sparse) posterior. As an additional baseline we also considered the SGPVAE model
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Figure 6.2: The moving ball dataset. Each row corresponds to example trajectories from the mov-
ing ball dataset from Pearce [131]. Frames from each corresponding high-dimensional
video are overlaid and shaded by time in the first column, where lighter shading corre-
sponds to earlier time points. Each of these videos is generated from a corresponding
two-dimensional latent trajectory depicted in the right column.

from Jazbec et al. [74] trained with m = 15 global inducing points. Finally, to illustrate the
impact of imposing the GP prior on the latent space, we included results from training a
standard VAE with an isotropic Gaussian prior. Qualitatively, we found that the standard
VAE struggled to recover the true smooth latent trajectories; on the other hand we found
that our FA-SGPVAE model could accurately infer videos’ underlying trajectories, with
similar results as the full GPVAE model and SGPVAE (Figure 6.2).

We next assessed the impact of varying the number of local inducing points h on FA-
SGPVAE’s performance. We found that our method’s performance was largely invariant
to the number of inducing points, with near-identical performance to the full GPVAE
even with h = 5. On the other hand, we found that the performance of Jazbec et al. [74]’s
SGPVAE model varied greatly with the number of global inducing points m. Notably,
SGPVAE’s exhibited worse performance not only for low m, which is expected, but also
for higher m. We conjecture that this phenomenon was due a more difficult optimization
landscape prone to getting stuck in local minima when optimizing a global set of inducing
parameters compared to amortizing these parameters as the output of a neural network.

Altogether, these results suggest that our proposed FA-GPVAE model can accurately
approximate the full GPVAE with significantly lower computational costs.
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Figure 6.1: Moving ball dataset results. Each row corresponds to example trajectories from
the moving ball dataset from Pearce [131]. Frames from each corresponding high-
dimensional video are overlaid and shaded by time in the first column, where lighter
shading corresponds to earlier time points. Each of these videos is generated from a cor-
responding two-dimensional latent trajectory depicted in blue the remaining columns.
Trajectories inferred by our proposed FA-SGPVAE model and baselines are depicted in
orange in each method’s corersponding column.

6.5 discussion

In this chapter we considered the problem of latent variable modeling where we explicitly
assume dependence between individual samples (i.e., we break the independence assump-
tion of previous models). In order to account for these dependencies, we may impose
a Gaussian process prior on our latent space. However, doing so introduces substantial
computational challenges that must be overcome to apply these models to larger-scale
datasets.

Towards addressing these issues, here we propose the fully amortized sparse Gaussian
process VAE (FA-SGPVAE). Our model leverages the idea of inducing points from the
GP literature in order to scalably approximate the full GP prior. Critically, rather than
relying on a single global set of inducing variables as done in previous work, we instead
impose a hierarchical prior over inducing points that allows us to learn separate sets of
local inducing points for each sample. On a simulated dataset we demonstrate that our
model can accurately approximate a full Gaussian process VAE model at a fraction of the
computational cost. Moreover, we find that our method is more stable to train compared
to previous sparse GP VAE approximations.

As seen in our previous chapters, by formulating our beliefs in the language of proba-
bilistic graphical models, we may easily extend the ideas presented here to handle other
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Figure 6.2: Assessing the impact of the number of inducing points on the moving ball dataset.
For different numbers of local inducing points h, we trained FA-SGPVAE models and
assessed their performance at recovering videos’ latent trajectories. We similarly as-
sessed the performance of varying the number of global inducing points m for SGP-
VAE. For comparison we also include results from training a standard VAE and the full
GPVAE model.

data modalities or analysis tasks. While the model presented here was inspired by the
emergence of spatially and temporally resolved omics protocols, in this chapter we re-
stricted ourselves to synthetic data settings. Yet, by combining our proposed sparse Gaus-
sian process prior inference technique with noise models for single-cell modalities (e.g.
scVI for RNA-seq), we may easily handle these real-world data modalities with further
sources of measurement noise.

6.a derivations accompanying the gaussian process prior vae

6.a.1 Computing the normalizing constant in closed form

Here we derive a closed-form expression for the normalizing constant Z in Equation (20).

Z =

∫ ∏
i

q̃ϕ(zi | yi)p(z1:N)dz1:N (65)

=

∫ ∏
i

N
(
zi | µ̃(yi), σ̃2(yi)

)
N (z1:N | 0,K)dz1:N (66)

=

∫ ∏
i

N
(
µ̃(yi) | zi, σ̃2(yi)

)
N (z1:N | 0,K)dz1:N, (67)
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where we leveraged the symmetry of the Gaussian distribution around its mean to arrive
at the last equality. We recognize Equation (67) as the marginal likelihood for a Gaussian
process with observed data points µ̃ =

{
µ̃(yi)

}
and noise σ̃2 =

{
σ̃2(yi)

}
, giving us

Z = N(µ̃ | 0,K+ diag(σ̃2)), (68)

and thus

logZ = logN(µ̃ | 0,K+ diag(σ̃2)), (69)

where diag(σ̃2) is a diagonal matrix with entries specified by σ̃2.

6.a.2 An alternate expression for the variational GP posterior

Starting with our definition for the full GPVAE posterior we have

qϕ(z1:N | y1:n) =
1

Z

n∏
i=1

q̃ϕ(zi | yi)p(z1:n) (70)

=
1

Z
N
(
z1:n | µ̃, diag(σ̃2)

)
N(z1:n | 0,K) (71)

=
1

Z
N
(
µ̃ | z1:n, diag(σ̃2)

)
N(z1:n | 0,K) (72)

=
1

Z
qϕ(z1:n, µ̃) (73)

=
1

Z
qϕ(z1:n | µ̃)qϕ(µ̃), (74)

where the joint distribution qϕ(z1:n, µ̃) is given by

qϕ(z1:n, µ̃) = N

((
0

0

)
,

(
Kz Kz,µ̃

Kµ̃,z K+ diag(σ̃2)

))
. (75)

Continuing, we then have

qϕ(z1:n | y1:n) =
1

Z
qϕ(z1:n | µ̃)qϕ(µ̃). (76)

Frrom Equation (75), we know that our marginal distribution for µ̃ has the form

qϕ(µ̃) = N(µ̃ | 0,K+ diag(σ̃2)), (77)

which is the same as our expression for Z in Equation (68). Cancelling terms leaves us
with

qϕ(z1:n | y1:n) = qϕ(z1:n | µ̃). (78)
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This corresponds to a conditional Gaussian distribution with the form

qϕ(z1:n | y1:n) = N(KzzΣ
−1µ̃,Kzz −Kzµ̃Σ

−1Kµ̃z). (79)

and our univariate posteriors can be written as

qϕ(zi | y1:n) = N(kT
xi
Σ−1µ̃,k(xi, xi) − kT

xi
Σ−1kxi

). (80)



Part III

C O D A



7
W H E R E I T G O E S F R O M H E R E

Recall the main claim at the beginning of this thesis:

No single model is suitable for all lines of inquiry. Distinct scientific questions require
distinct model structures to obtain meaningful insights from single-cell data.

The prior three chapters explore this idea in three distinct contexts. Chapter 4 consid-
ers single-cell perturbation screen analyses, where only a subset of the total variations
corresponding to underlying biology may be meaningful to the analyst. In Chapter 5

we focused on single-cell methylation profiles measured via bisulfite sequencing, which
produces a unique set of technical artifacts that must be accounted for to obtain robust
conclusions. Finally, in Chapter 6 we explicitly model known dependencies (e.g. spatial
or temporal) between samples when this information is available, thereby breaking the
typical independence assumption between samples. In each of these cases, by carefully
tailoring our models’ structures to the problem at hand, we may enable new insights that
are obscured by simpler, less-structured modeling approaches.

At first glace, the theme of this thesis may appear to contradict the current wave of
machine learning research focused on training foundation models (i.e., large-scale models
trained on vast datasets which can be applied to a variety of downstream tasks) at ever-
increasing scales. However, we do not see our results here as contradicting these trends,
but rather as complementing them. That is, the noisy nature of biological data and the many
distinct, sometimes conflicting, questions we seek to ask of our data necessitate a diverse
modeling toolbox. While in this thesis we focused on expanding our toolbox via tailored
model architectures, advances in large-scale machine learning may also be leveraged in
certain scenarios to unlock new insights from our data.

For example, a line of recent work has focused on developing high-content screening
(HCS) assays that combine image-based phenotyping with high-throughput perturbations
[62, 92]. The core idea behind HCS is that variations in cellular morphology, as captured
by stains that highlight specific cellular structures, are intimately linked with cellular
health and function. For example, Cell Painting [20], perhaps the most popular HCS pro-
tocol, multiplexes six fluorescent dyes to highlight core organelles and cellular compo-
nents (Figure 7.1). While traditional analyses of this data relied on domain-expert-crafted
feature extractors (e.g. as implemented in software tools like CellProfiler [26]), more re-
cent works have found that self-supervised representation learning techniques based on
DINO or masked autoencoder architectures can capture more subtle changes in cellular
morphology, resulting in representations that better agree with known biology [91, 146].

123



where it goes from here 124

Figure 7.1: High-content screening. In high-content screens, cells are perturbed (e.g. via chemical
exposure or genetic edit) and stained to highlight specific organelles (left). Images of
cells are then captured via automated microscopy (center), and quantitative summaries
of cells’ states can then be obtained by embedding these images using large-scale cel-
lular image foundation models (right). These embeddings can then be leveraged for a
variety of downstream tasks.

Here increases in model scale have consistently led to superior performance on down-
stream tasks, as observed in other fields of machine learning. Notably, however, these
models’ improved performance have not solely been due to increases in scale. By incorpo-
rating custom “channel-agnostic” model architectures designed to reason over the distinct
sources of information in different microscopy channels, these models have achieved sig-
nificantly stronger performance than off-the-shelf architectures originally designed for
natural images. Thus, new lines of investigation with this data may be enabled through a
combination of increases in scale along with tailored model architectures.

As another example, a substantial line of recent work has developed so-called sequence-
to-function (S2F) models (Figure 7.2). Using short subsequences of DNA as input, S2F
models are trained to predict gene expression levels (quantified via RNA abundance)
along with measurements of intermediate processes that regulate gene expression. By do-
ing so, researchers hope that S2F models will recover the underlying “sequence grammar”
that governs the relationship between genomic DNA and its many regulatory functions
that control gene expression.

Initial S2F models used convolutional neural networks (CNNs) to model DNA se-
quences [81, 82, 188]. Inspired by advances in model scaling from the natural language
processing community, subsequent work has largely focused on increasing performance
by developing larger-scale transformer [9, 97] or hyena-based models [22, 125], and these
methods have indeed led to substantial gains in performance. Yet, as with high-content
screening, increases in model scale are not the only path to achieving stronger perfor-
mance with S2F models. For example, Pampari et al. [129] propose a CNN architecture
designed to disentangle nuisance variations in ATAC-seq data due to enzyme preferences
from variations corresponding true underlying regulatory syntax. Pampari et al. [129]
find that their ChromBPNet model achieved competitive performance with Enformer [9],
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Figure 7.2: Sequence to function modeling. Sequence to function (S2F) models take in (one-hot-
encoded) windows of DNA (left) and attempt to predict gene expression as quantified
by RNA sequencing along with measurements of intermediate regulatory processes
that control gene expression (e.g. chromatin accessibility via ATAC-seq or transcription
factor binding via ChIP-seq) (center). Post-training, explainable AI techniques can be
applied to these models to provide new insights on DNA’s regulatory grammar (right).

a larger-scale transformer-based model, despite orders of magnitude fewer parameters (6
million vs 250 million) and context length (2 kilobases vs 100 kilobases). Further experi-
mentation with combinations of larger-scale models and datasets along with architectures
tailored to the nuances of given S2F modeling tasks thus represents a promising line for
future work.

On the other hand, naively increasing model scale without taking into account the
specifics of a problem domain may fail to yield fruitful results. In the context of single-
cell omics, a number of works have proposed large-scale transformer-based “single-cell
foundation models” trained on massive datasets [35, 66, 182]. While initially demonstrat-
ing promising results, subsequent independent benchmarks [18, 80, 103] have shown that
these methods are often outperformed by simpler task-specific models (e.g. logistic regres-
sion) that can be applied at a fraction of the computational cost. Thus, we caution that
increased model scale is not the be all and end all; rather, scale is one of many potential
tools that may (or may not) be appropriate for a given problem.

With these ideas in mind, in the remainder of this chapter we present some potential di-
rections for future work where the author believecs further advances in machine learning
may continue to expand the computational biologist’s toolbox.
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7.1 mechanistic modeling for increased interpretability

The models discussed in this thesis infer lower-dimensional representations of single-cell
measurements that are meant to reflect meaningful underlying biological phenomena.
To accomplish this goal, we (1) employ rich graphical models that account for known
nuisance sources of variation and (2) train our models during inference to decode our
representations into the parameters of a conditional likelihood function that may describe
measurements from a given modality. For example, in the scVI model we decode cells’ rep-
resentations into the parameters of a negative binomial distribution, which can accurately
describe over-dispersed scRNA-seq count measurements.

In general, these likelihood functions are chosen post hoc based on their consistency
with observed measurements, rather than any underlying biophysical phenomena. Thus,
our models learn to explain the what, rather than the why behind our measurements.
While simply learning meaningful summaries of our data by itself is enough to enable
many analyses, other settings may demand greater interpretability than that provided
by black box representation learning methods. Towards achieving the goal of “opening
the black box”, a recent line of work has developed generative models whose likelihood
functions are derived via chemical master equations (CMEs) corresponding to specific
causal biophysical models of transcriptional and/or chromatin dynamics [28, 48].

Rather than simply explaining the observed data well, the inferred parameters of these
richer likelihood functions admit direct interpretations as part of a causal model of the
data generating process, thereby facilitating further lines of inquiry. For example, Carilli
et al. [28] leverage their biophysical variational inference (biVI) model of transcription
to identify genes with statistically significant differences between cell populations in the
parameters of a specific biophysical model of transcription and RNA splicing (e.g. burst
size, degradation rates, etc.). Notably, some genes identified by this procedure did not
have notable differences in mean spliced RNA expression, and thus would not have been
recovered by models that only consider observed spliced RNA counts (e.g. scVI).

With the continuing development of richer causal models of cellular dynamics [59] and
improved techniques for approximating any analytically intractable intermediate quanti-
ties [58], we anticipate that further developments in this area will have a major impact on
single-cell analyses going forward.

7.2 closing the loop with sequential experimental design

In this thesis we emphasized the importance of tailoring our model structures to acco-
modate the specific goals of a given investigation. Implicitly, in our works we assumed
that the data available to us was fixed. However, we may be fortunate to be in a setting
where, based on computational results from previously collected data, we can strategi-
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Figure 7.1: The sequential optimal experimental design workflow. Data is gathered from a wet
lab experiment and used to make inferences with a computational model. The outputs
of this model aid in the design of subsequent experiments, which collect further data
for model training.

cally choose our next set of data collection experiments so as to be the most useful for
further analyses. We depict this workflow in Figure 7.1.

This high-level idea has been extensively studied in the machine learning literature un-
der the umbrella of optimal (sequential) experimental design [70]. A major differentiator
between methods here lies in their definitions of the “usefulness” of a given experiment.
For example, one recent work in the context of scRNA-seq CRISPR perturbation exper-
iments [71] used prior biological knowledge on the relationships between genes to con-
struct a kernel matrix measuring the pair-wise similarity between genes. Based on the
intuition that future experiments should focus on as-of-yet poorly explored areas of the
perturbation space, subsequent perturbations were chosen by identifying the untested
perturbation with the maximal distance to already tested perturbations in the kernel’s
corresponding feature space.

One exciting line of approaches in this space has approached experimental design from
a Bayesian perspective. Bayesian experimental design (BED) approaches formalize exper-
iments as consisting of some user-controllable parameters ξ (i.e., the design) of the exper-
iment, which result in some outcome y drawn from a distribution conditioned on ξ. Our
goal in the BED setting is to choose the design ξ that provides the most information about
some quantity of interest θ. In the case where we have an model p(y | θ, ξ) for experimen-
tal outcomes given a design, we may define the information gain in θ from a hypothetical
experiment as

InfoGainθ(ξ,y) = H[p(θ)] −H[p(θ | y, ξ)] (81)

= Ep(θ|y,ξ)[logp(θ | y, ξ)] − Ep(θ) [logp(θ)] , (82)
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where p(θ | y, ξ) ∝ p(θ)p(y | θ, ξ). As the outcome y is not known a priori, we cannot
optimize this quantity directly and instead consider the expected information gain (EIG)

EIGθ(ξ) = Ep(y|ξ) [InfoGainθ(ξ,y)] (83)

= Ep(θ)p(y|θ,ξ) [logp(θ | y, ξ) − logp(θ)] (84)

= Ep(θ)p(y|θ,ξ) [logp(y | θ, ξ) − logp(y | ξ)] . (85)

The above formulation provides a principled foundation for designing experiments, though
it poses notable computational challenges due to the intractability of estimating the EIG
naively. As a result, a substantial line of recent work has developed approximation meth-
ods for cheaply evaluating the EIG; we refer the reviewer to Rainforth et al. [133] for a
review on these developments.

Notably, Jones et al. [75] applied BED techniques to design a procedure for choosing
maximally informative tissue slices when designing spatial genomics studies. On a num-
ber of downstream tasks, Jones et al. [75] found that their method led to superior per-
formance with fewer tissue slices compared to naive experimental designs. We anticipate
that further computational advances will enable additional exciting applications of BED
in molecular biology.

7.3 modeling across biological scales

The work proposed in this thesis centered around molecular measurements conducted
at the level of single cells. Without a doubt, measurements at this scale provide a crucial
window into many biological phenomena; cells are commonly referred to as the “funda-
mental units of life” for good reason.

However, biology does not operate at just a single scale. The cellular phenomena that
we observe via single-cell omics measurements interact in complex ways to enable higher-
level tissue functions, and, further down the line, organism-level phenotypes. Indeed, even
our cell-level omics profiles are themselves the product of an intricate web of interactions
between nucleotide sequences encoded in DNA and external stimuli. Thus, attaining a
deeper understanding of complex biological processes in multicellular organisms will
likely require models that can reason across different biological scales.

Initital efforts along these lines have already demonstrated promising results. For ex-
ample, CellSpace from Tayyebi, Pine, and Leslie [153] learns embeddings of ATAC-seq
data that explicitly take into account the DNA sequences underlying accessible chromatin
peaks. By doing so, the authors of that work found that their method learned richer latent
structures reflecting transcription factor binding motifs not captured by previous methods
that ignore sequence information. Additionally, multiple groups have recently proposed
sequence to function models that can accurately predict single-cell-level-measurements,
in contrast to previous works that operated at the bulk level [69, 94]. Combined with
explainable AI techniques, these models have demonstrated the ability to uncover both
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previously known and novel insights on DNA’s regulatory grammar at a finer-grained
level than earlier bulk-level models.

Further efforts at integrating information across biological scales thus represent a highly
promising direction for future work.
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Figure 7.1: That’s all folks! Thanks for reading until the end :).
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